K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

Bạn có thể làm cách sau tuy hơi dài

Lấy x=1-y thay vào P rồi phá ngoặc lẫn dấu ra.

Ta sẽ tìm được GTNN của P.

7 tháng 5 2016

Bài này hoàn toàn có thể giải bằng BĐT Cổ điển.

BĐT Cauchy-schwarz( Bunhiacopxki):

\(P\ge\frac{1}{2}.\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2\)

Việc còn lại không khó! :)

NV
12 tháng 8 2021

Đặt \(\left\{{}\begin{matrix}x+\sqrt{x^2+1}=a>0\\y+\sqrt{y^2+1}=b>0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\sqrt{x^2+1}=a-x\\\sqrt{y^2+1}=b-y\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}2ax=a^2-1\\2by=b^2-1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{a^2-1}{2a}\\y=\dfrac{b^2-1}{2b}\end{matrix}\right.\)

 \(\Rightarrow\left(\dfrac{a^2-1}{2a}+\sqrt{\left(\dfrac{b^2-1}{2b}\right)+1}\right)\left(\dfrac{b^2-1}{2b}+\sqrt{\left(\dfrac{a^2-1}{2a}\right)+1}\right)=1\)

\(\Rightarrow\left(\dfrac{a^2-1}{2a}+\dfrac{b^2+1}{2b}\right)\left(\dfrac{b^2-1}{2b}+\dfrac{a^2+1}{2a}\right)=1\)

\(\Rightarrow\left(\dfrac{a+b}{2}+\dfrac{a-b}{2ab}\right)\left(\dfrac{a+b}{2}-\dfrac{a-b}{2ab}\right)=\dfrac{4ab}{4ab}=\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4ab}\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}-\dfrac{\left(a+b\right)^2}{4ab}-\dfrac{\left(a-b\right)^2}{4\left(ab\right)^2}+\dfrac{\left(a-b\right)^2}{4ab}=0\)

\(\Rightarrow\dfrac{\left(a+b\right)^2}{4}\left(1-\dfrac{1}{ab}\right)+\dfrac{\left(a-b\right)^2}{4ab}\left(1-\dfrac{1}{ab}\right)=0\)

\(\Rightarrow\left(1-\dfrac{1}{ab}\right)\left(\dfrac{\left(a+b\right)^2}{4}+\dfrac{\left(a-b\right)^2}{4ab}\right)=0\)

\(\Rightarrow1-\dfrac{1}{ab}=0\Rightarrow ab=1\)

\(\Rightarrow\left(x+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)

\(\Rightarrow x+y=0\Rightarrow y=-x\)

\(P=2\left(x^2+\left(-x\right)^2\right)+0=4x^2\ge0\)

Dấu "=" xảy ra khi \(x=y=0\)

NV
5 tháng 11 2021

\(\left\{{}\begin{matrix}x;y;z\ge0\\x+y+z=1\end{matrix}\right.\) \(\Rightarrow0\le x;y;z\le1\)

\(\Rightarrow\left\{{}\begin{matrix}x^2\le x\\y^2\le y\\z^2\le z\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2x^2+x+1\le x^2+2x+1\\2y^2+y+1\le y^2+2y+1\\2z^2+z+1\le z^2+2z+1\end{matrix}\right.\)

\(\Rightarrow P\le\sqrt{\left(x+1\right)^2}+\sqrt{\left(y+1\right)^2}+\sqrt{\left(z+1\right)^2}=x+y+z+3=4\)

\(P_{max}=4\) khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và các hoán vị

12 tháng 11 2019

a) Ta có : \(A=\left|x+1\right|+\left|y-2\right|\)

\(\ge\left|x+1+y-2\right|\)

\(=\left|x+y-1\right|=\left|5-1\right|=\left|4\right|=4\)

Dấu "=" xảy ra <=> (x + 1)(y - 2) \(\ge\)0

Vậy Min A = 4 <=>  (x + 1)(y - 2) \(\ge\)0

NV
16 tháng 4 2022

\(P=\left(2x+\dfrac{1}{x}\right)^2+9+\left(2y+\dfrac{1}{y}\right)^2+9-18\)

\(P\ge2\sqrt{9\left(2x+\dfrac{1}{x}\right)^2}+2\sqrt{9\left(2y+\dfrac{1}{y}\right)^2}-18\)

\(P\ge12x+12y+\dfrac{6}{x}+\dfrac{6}{y}-18\)

\(P\ge6\left(4x+\dfrac{1}{x}\right)+6\left(4y+\dfrac{1}{y}\right)-12\left(x+y\right)-18\)

\(P\ge6.2\sqrt{\dfrac{4x}{x}}+6.2\sqrt{\dfrac{4y}{y}}-12.1-18=18\)

\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)

7 tháng 5 2016

P=\(\left\{\frac{2x+1}{x}\right\}^2\)+\(\left\{\frac{2y+1}{y}\right\}^2\)=\(\left\{2+\frac{1}{x}\right\}^2\)+\(\left\{2+\frac{1}{y}\right\}^2\) >= 2.\(\left\{2+\frac{1}{x}\right\}^{ }\)\(\left\{2+\frac{1}{y}\right\}^{ }\)

P>= 2.\(\left\{4+\frac{2}{x}+\frac{2}{y}+\frac{1}{xy}\right\}^{ }\)

P>=8 + 4\(\left\{\frac{1}{x}+\frac{1}{y}\right\}^{ }\) + \(\frac{2}{xy}\)

P>= 8 + 4.\(\left\{\frac{x+y}{xy}\right\}^{ }\)+\(\frac{2}{xy}\)

P>= 8+ \(\frac{4}{xy}\)+\(\frac{2}{xy}\)

P>= 8+ \(\frac{6}{xy}\)>= 8+ 6.\(\frac{4}{\left(x+y\right)^2}\)>= 8 + 6.4= 32

dấu = xảy ra khi x=y =\(\frac{1}{2}\)

 

13 tháng 11 2019

Giá trị tuyệt đối của một số hữu tỉ cộng, trừ, nhân, chia số thập phânGiá trị tuyệt đối của một số hữu tỉ cộng, trừ, nhân, chia số thập phân

13 tháng 11 2019

a, \(A=\left|x+1\right|+\left|y-2\right|\)

\(A=\left|x+1\right|+\left|5-x-2\right|\)

\(A=\left|x+1\right|+\left|3-x\right|\ge x+1+3-x=4\)

Dấu " = " sảy ra \(\Leftrightarrow\left\{{}\begin{matrix}x+1\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow-1\le x\le3\)