K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 5 2016

\(A=\frac{1}{2^2}+\frac{1}{3^2}+.........+\frac{1}{2016^2}\)

\(\frac{1}{2^2}<\frac{1}{1\cdot2}\)

\(\frac{1}{3^2}<\frac{1}{2\cdot3}\)

...........

\(\frac{1}{2016^2}<\frac{1}{2015\cdot2016}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+........+\frac{1}{2016^2}<\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+.....+\frac{1}{2015\cdot2016}\)

\(\Rightarrow A<\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{2015}-\frac{1}{2016}\)

\(\Rightarrow A<\frac{1}{1}-\frac{1}{2016}\)

\(\Rightarrow A=\frac{2015}{2016}\)

\(\Rightarrow A<1\)    (1)

\(\frac{1}{2^2}>0\)

\(\frac{1}{3^2}>0\)

........

\(\frac{1}{2016^2}>0\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+......+\frac{1}{2016^2}>0+0+.......+0\)

\(\Rightarrow A>0\)       (2)

Từ (1) và (2):

\(\Rightarrow\)0<A<1

\(\Rightarrow\)A không là số tự nhiên

1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản b) Cho A...
Đọc tiếp

1. Cho \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\).Chứng minh rằng \(A< \frac{3}{4}\)

2. Cho \(A=\frac{50}{111}+\frac{50}{112}+\frac{50}{113}+\frac{50}{114}\). Chứng tỏ \(1< A< 2\)

3.a) Cho các số nguyên dương \(x\)và \(y\).Biết rằng \(x\)và\(y\)là 2 số nguyên tố cùng nhau:

Chứng minh rằng: \(\frac{a}{b}=\frac{x.\left(2017.x+y\right)}{2018.x+y}\)là phân số tối giản 

b) Cho A =\(\frac{2018^{100}+2018^{96}+...+2018^4+1}{2018^{102}+2018^{100}+...+2018^2+1}\). Chứng minh rằng \(4.A< \left(0,1\right)^6\)

4. Cho \(A=\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{81}+\frac{1}{100}\). Chứng tỏ rằng \(A>\frac{65}{132}\)

5.Chứng minh rằng \(A=\frac{100^{2016}+8}{9}\)là số tự nhiên 

6. Chứng tỏ rằng phân số có dạng \(\frac{3a+4}{2a+3}\)là phân số tối giản

7. Tìm \(x\inℤ\)sao cho \(x-5\)là bội của \(x+2\)

8.Cho \(a,b,c,d\inℕ^∗\)thỏa mãn \(\frac{a}{b}< \frac{c}{d}\). Chứng minh rằng \(\frac{2018.a+c}{2018.b+d}< \frac{c}{d}\)

9.Cho S=\(\frac{5}{2^2}+\frac{5}{3^2}+\frac{5}{4^2}+...+\frac{5}{100^2}\). Chứng tỏ rằng \(2< S< 5\)

10. Cho 2018 số tự nhiên là \(a1;a2;...;a2018\)đều là các số lớn hơn 1 thỏa mãn điều kiện \(\frac{1}{a1^2}+\frac{1}{a2^2}+\frac{1}{a3^2}+...+\frac{1}{a2018^2}=1\). Chứng minh rằng trong 2018 số này ít nhất sẽ có 2 số bằng nhau

4
14 tháng 4 2019

Ô...mai..gót

Thế này ko ai giải cho bn đâu vì họ ko dại gì làm tất cả chỉ để lấy cái T.I.C.K

Hãy đăng từng câu một 

Ai đồng quan điểm

14 tháng 4 2019

Bạn lấy mấy bài này từ mấy cái đề học sinh giỏi vậy ?

29 tháng 6 2017

Đề sai rồi. Chỉ cần  \(3\left(\frac{1}{1^2}+\frac{1}{2^2}+\frac{1}{3^2}\right)=\frac{49}{12}>4\) thì cần gì tới 4 số phải bằng nhau nữa.

30 tháng 6 2017

xin đính chính lại là VT > 5. Bạn giúp mình bài này với

9 tháng 1 2018

Đặt A = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

...........

\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}=\frac{1}{n-1}-\frac{1}{n}\)

\(\Rightarrow A< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}=1-\frac{1}{n}< 1\) (1)

Mà \(A>0\) (2)

Từ (1) và (2) => 0 < A < 1 => đpcm

26 tháng 9 2016

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)

25 tháng 4 2017

A ko thuộc N

26 tháng 3 2019

Đặt: \(A=\frac{1}{2}.\frac{3}{4}.\frac{5}{6}.\frac{7}{8}.....\frac{2013}{2014}\) (1)

Ta thấy \(A< \frac{2}{3}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\)

Do đó nhân vế với vế, ta được: 

\(A^2< \frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\)

\(\Rightarrow A^2< \frac{1}{2015}\)

Mặt khác, \(A>\frac{1}{2}.\frac{4}{5}.\frac{6}{7}.\frac{8}{9}.....\frac{2014}{2015}\) (2)

Từ (1) và (2), ta được: 

\(A^2>\frac{1}{4}.\left(\frac{3}{4}.\frac{4}{5}.\frac{5}{6}.\frac{6}{7}.\frac{7}{8}.\frac{8}{9}.....\frac{2013}{2014}.\frac{2014}{2015}\right)\)

\(\Rightarrow A^2>\frac{1}{4}.\frac{3}{2015}\Rightarrow A^2>\frac{3}{8060}>\frac{1}{4028}\)

8 tháng 11 2015

1) K = D. 10 000 + Q

=> K-Q = D.10 000

=> 2015(K-Q) + 2016D  = 2015.D.10 000 + 2016D =20152016.D

Vậy  2015(K-Q) + 2016D chia cho D = 20152016D:D = 20152016

2) \(A=\frac{\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}\right)}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}=\)

     \(A=\frac{\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}\right)-\left(1+\frac{1}{2}+\frac{1}{3}\right)}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}=\)

            \(=\frac{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}{\frac{1}{4}+\frac{1}{5}+\frac{1}{6}}=1\)