Tìm số có hai chữ số biết rằng số đó gấp 9 lần tổng các chữ số của nó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a ) Gọi số đó là ab .Theo đề bài ra ta có : b ) Gọi sô đó là ab .Theo đề bài ra ta có :
ab = 6 x ( a + b ) ab = 7 x ( a + b )
10 x a + b = 6 x a + 6 x b a x 10 + b = 7 x a + 7 x b
10 x a - 6 x a = 6 x b - b 10 x a - 7 x a = 7 x b - b
4 x a = 5 x b 3 x a = 6 x b
=> số đó là 45 => ab = 36
c ) ab = 8 x ( a + b )
a x 10 + b = 8 x a + 8 x b
a x 10 - 8 x a = 8x b - b
2 x a = 7 x b
=> ab = 27
d)
ab = 9 x ( a + b )
a x 10 + b = 9 x a + 9 x b
a x 10 - 9 x a = 9 x b - b
a x 1 = 9 x 8
=>n số đó là 18
Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
a)gọi số đó là :ab
ab = 6 x (a+b)
10a + b= 6a + 6b
4 x a= 5 x b
vậy ab = 54
Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
Gọi số cần tìm là ab
Mà số đó gấp 7 lần tổng các chữ số của nó
\(\Rightarrow\)ab=7.(a+b)
Ta có:ab=7.(a+b)
10a+b=7a+7b
10a-7a=7b-b
3a=6b(1)
Từ 1 suy ra được a=6;b=3
Vậy số cần tìm là 63
Câu2:
Gọi số cần tìm là ab
Mà số đó gấp 8 lần tổng các chữ số của nó
\(\Rightarrow\)ab=8x(a+b)
Ta có:ab=8x(a+b)
10a+b=8a+8b
10a-8a=8b-b
2a=7b(1)
Từ(1) suy ra a=7;b=2
Vậy số cần tìm là 72
Gọi số cần tìm là ab
ab = ( a + b ) x 9
a0 + b = a x 9 + b x 9
a x 10 + b = a x 9 + b x 9
a x ( 10 - 9 ) = b x ( 9 - 1 )
b x 1 = b x 8
- Do đó a phải là số chia hết cho 8 . a là số có một chữ số , đứng ở hàng chịc , chia hết cho 8
Vậy a = 8 . Suy ra b = 1
- Số phải tìm là 81
Đầu tiên gọi số đó là ab. Theo đề thì ab = ( a + b ) * x ( x là số lần trong đề )
Ta có :
a * 10 + b = a * x + b * x
a * 10 - a * x = b * x - b
a * ( 10 - x ) = b * ( x - 1 ) (*)
Ta sẽ sử dụng công thức (*) để giải các bài trên.
Giải :
a) Gọi số đó là ab
Theo đề thì ab = ( a + b ) * 6
Ta có :
a * 10 + b = a * 6 + b * 6
a * 10 - a * 6 = b * 6 - b
a * ( 10 - 6 ) = b * ( 6 - 1 )
a * 4 = b * 5
Vậy a phải chia hết cho 5. Vì a khác 0 và là số có 1 chữ số nên a = 5.
Thay a = 5 ta có b = 4.
Vậy số đó là 54.
b) Gọi số đó là ab.
Theo đề thì ab = ( a + b ) * 8
Ta có :
a * 10 + b = a * 8 + b * 8
a * 10 - a * 8 = b * 8 - b
a * ( 10 - 8 ) = b * ( 8 - 1 )
a * 2 = b * 7
Vậy a chỉ có thể chia hết cho 7. Vì a khác 0 và là số có 1 chữ số nên a = 7.
Thay a = 7 vào biểu thức, ta có b = 2.
Vậy số đó là 72.
c) Gọi số đó là ab.
Theo đề thì ab = ( a + b ) * 9
Ta có :
a * 10 + b = a * 9 + b * 9
a * 10 - a * 9 = b * 9 - b
a * ( 10 - 9 ) = b * ( 9 - 1 )
a = b * 8
Vậy a chia hết cho 8. Vì a khác 0 và là số có 1 chữ số nên a = 8.
Thay a = 8 vào biểu thức được b = 1.
Vậy số đó là 81.
Đ/s : a) 54; b) 72; c ) 81.
Nhận xét : với mọi x thỏa 1 < x < 10 thì số cần tìm luôn là số chia hết cho 9.
c)Gọi số tự nhiên đó là ab
Vì số tự nhiên ab gấp 9 lần tổng các chữ số của nó
⇒⇒ab = 9x(a+b)
⇔⇔10a =9a+9b
⇔⇔a = 8b
Xét 2 trường hợp:
Nếu b = 1 và a = 8 (có thể lấy được)
Nếu b = 2 và a = 16 (không thể lấy được vì ab chỉ có 2 chữ số)
Vậy khi xét qua 2 trường hợp ab = 81
Gọi số đó là ab. (0<a; b <10). Ta có:
1/ Gấp 7 lần: <=> ab=7(a+b) <=> 10a+b=7(a+b) <=> 10a+b=7a+7b
<=> 3a=6b => a=2b => b=1; 2; 3; 4 và a=2; 4; 6; 8
Các số cần tìm là: 21; 42; 63; 84
2/ Gấp 6 lần: <=> ab=6(a+b) <=> 10a+b=6(a+b) <=> 10a+b=6a+6b
<=> 4a=5b => \(a=\frac{5b}{4}\) => b=4 và a=5
Các số cần tìm là: 45
3/ Gấp 6 lần: <=> ab=8(a+b) <=> 10a+b=8(a+b) <=> 10a+b=8a+8b
<=> 2a=7b => \(a=\frac{7b}{2}\) => b=2 và a=7
Các số cần tìm là: 72
4/ Gấp 9 lần: <=> ab=6(a+b) <=> 10a+b=9(a+b) <=> 10a+b=9a+9b
<=> a=8b => b=1 và a=8
Các số cần tìm là: 81
Gọi số đó là: \(\overline{ab}\)
Theo đề bài số đó gấp 8 lần tổng các chữ số nó, vậy:
\(\overline{ab}=8\times\left(a+b\right)\\ \Rightarrow a\times10+b=8\times a+8\times b\\ \Rightarrow a\times10-8\times a=8\times b-b\\ \Rightarrow2\times a=7\times b\\ \Rightarrow\overline{ab}=27\)
Vậy số đó bằng 27
Gọi số cần tìm là \(\overline{ab}\).
Ta có:
\(\overline{ab}=9\times\left(a+b\right)\)
\(\Leftrightarrow10\times a+b=9\times a+9\times b\)
\(\Leftrightarrow a=8\times b\)
suy ra \(b=1,a=8\)
Số cần tìm là: \(81\).
số đó là 81 nhe bạn
Còn đây là lời giải:
Gọi số đó là ab ( a,b thuộc { 0 ,1 , ................. 99 } )
Có ab gấp 9 lần tổng hai số đó
Tức là : ab = 9x(a+b)
<=> 10a = b = 9a+ 9b
<=> a= 8b
Xét b = 1 => a= 8 ( tm~) ==> số cần tìm là 81
Xét b = 2=> a = 16 = Loại vì a thuộc { 1 ,2 ,......, 9 }
Vậy số cần tìm là 81
Số đó là 81
so do la 81