Tìm a biết : 4/5 - 1/a = 3/10
giúp em ạ gấp lắm rồi!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(M\left(x;y\right)\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}=\left(x+1;y+3\right)\\\overrightarrow{AB}=\left(1;-1\right)\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AM=\sqrt{\left(x+1\right)^2+\left(y+3\right)^2}\\AB=\sqrt{2}\end{matrix}\right.\)
Tam giác ABM vuông tại A và có diện tích 4
\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{AM}.\overrightarrow{AB}=0\\\dfrac{1}{2}AM.AB=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+1-\left(y+3\right)=0\\\sqrt{2\left(x+1\right)^2+2\left(y+3\right)^2}=8\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=x-2\\\left(x+1\right)^2+\left(y+3\right)^2=32\end{matrix}\right.\)
\(\Rightarrow\left(x+1\right)^2+\left(x-2+3\right)^2=32\)
\(\Leftrightarrow\left(x+1\right)^2=16\Rightarrow\left[{}\begin{matrix}x=3\Rightarrow y=1\\x=-5\Rightarrow y=-7\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}M\left(3;1\right)\\M\left(-5;-7\right)\end{matrix}\right.\)
Bài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1\(\ge\)0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967\(\ge\)0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2\(\le\)0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
ài 1:
a) A= x2 + 4x + 5
=x2+4x+4+1
=(x+2)2+1$\ge$≥0+1=1
Dấu = khi x+2=0 <=>x=-2
Vậy Amin=1 khi x=-2
b) B= ( x+3 ) ( x-11 ) + 2016
=x2-8x-33+2016
=x2-8x+16+1967
=(x-4)2+1967$\ge$≥0+1967=1967
Dấu = khi x-4=0 <=>x=4
Vậy Bmin=1967 <=>x=4
Bài 2:
a) D= 5 - 8x - x2
=-(x2+8x-5)
=21-x2+8x+16
=21-x2+4x+4x+16
=21-x(x+4)+4(x+4)
=21-(x+4)(x+4)
=21-(x+4)2$\le$≤0+21=21
Dấu = khi x+4=0 <=>x=-4
b)đề sai à
a) e chỉ cần nhân chúng lại với nhau = cách tách từng cái ra
b)đặt 4/2.5+4/5.8+4/8.11+......+4/62.65 là S
\(.S=\frac{4}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{62.65}\right)\)
\(S=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{62}-\frac{1}{65}\right)\)
\(S=\frac{4}{3}\left(\frac{1}{2}-\frac{1}{65}\right)\)
\(S=\frac{4}{3}\left(\frac{65}{130}-\frac{2}{130}\right)\)
\(S=\frac{4}{3}\left(\frac{63}{130}\right)\)
\(S=\frac{42}{65}\)
Bài 2 : \(\frac{15+a}{29+a}=\frac{3}{5}\)\(\Leftrightarrow\left(15+a\right)5=\left(29+a\right)3\Leftrightarrow75+5a=87+3a\Leftrightarrow5a-3a=87-75\Rightarrow2a=12\Rightarrow a=6\)
vậy a =6
`|2x+1|-3=x+4`
`<=>|2x+1|=x+4+3=x+7(x>=-7)`
`**2x+1=x+7`
`<=>x=7-1=6(tm)`
`**2x+1=-x-7`
`<=>3x=-6`
`<=>x=-2(tm)`
`|3x-5|=1-3x(x<=1/3)`
`**3x-5=1-3x`
`<=>6x=6`
`<=>x=1(l)`
`**3x-5=3x-1`
`<=>-5=-1` vô lý
`|2x+2|+|x-1|=10`
Nếu `x>=1`
`pt<=>2x+2+x-1=10`
`<=>3x+1=10`
`<=>3x=9`
`<=>x=3(tm)`
Nếu `x<=-1`
`pt<=>-2x-2+1-x=10`
`<=>-1-3x=10`
`<=>-11=3x`
`<=>x=-11/3(tm)`
Nếu `-1<=x<=1`
`pt<=>2x+2+1-x=10`
`<=>x+3=10`
`<=>x=7(l)`
Vậy `S={3,-11/3}`
để A có giá trị nguyên thì 3 chia hết cho n+1
suy ra n+1 thuộc Ư[3]={1,-1,3,-3}
bảng giá trị
n+1 1 -1 3 -3
n 0 -2 2 -4
vậy n thuộc {-4;-2;0;2}thì A là số nguyên
a: \(\left|3x-2\right|=4\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-2=4\\3x-2=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-\dfrac{2}{3}\end{matrix}\right.\)
b: Ta có: \(\left|5x-3\right|=\left|x-7\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-3=x-7\\5x-3=7-x\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=-4\\6x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=\dfrac{5}{3}\end{matrix}\right.\)
\(\frac{4}{5}-\frac{1}{a}=\frac{3}{10}\)
\(\frac{1}{a}=\frac{4}{5}-\frac{3}{10}\)
\(\frac{1}{a}=\frac{5}{10}\)
\(\frac{1}{a}=\frac{1}{2}\)
\(=>a=2\)
HT
\(\frac{4}{5}-\frac{1}{a}=\frac{3}{10}\)
\(\frac{1}{a}=\frac{4}{5}-\frac{3}{10}\)
\(\frac{1}{a}=\frac{1}{2}\)
\(\Rightarrow a=2\)