cho tam giac ABC vuong tai A co goc C=90 do BC=3cm CA=4cm tia phan giac BK tu K ke KE vuong AB
a) CM: BC vuong BE
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
sorry nhưng mik 2k9 chưa hok kiến thức lớp 7 nên k biết giải
a: Xét ΔEAB có ˆEAB=ˆEBAEAB^=EBA^
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
hay KA=KB
a) Xét ΔABE vuông tại A và ΔHBE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)(BE là tia phân giác của \(\widehat{ABC}\), H∈BC)
Do đó: ΔABE=ΔHBE(cạnh huyền-góc nhọn)
b) Ta có: ΔABC vuông tại A(gt)
⇒\(\widehat{ABC}+\widehat{ACB}=90^0\)(hai góc nhọn phụ nhau)
\(\Rightarrow\widehat{ACB}=90^0-\widehat{ABC}=90^0-60^0=30^0\)
Ta có: BE là tia phân giác của \(\widehat{ABC}\)(gt)
\(\Rightarrow\widehat{ABE}=\widehat{CBE}=\frac{\widehat{ABC}}{2}=\frac{60^0}{2}=30^0\)
Xét ΔEBC có \(\widehat{ECB}=\widehat{EBC}\left(=30^0\right)\)
nên ΔEBC cân tại E(định lí đảo của tam giác cân)
⇒EB=EC
Xét ΔEBH vuông tại H và ΔECH vuông tại H có
EB=EC(cmt)
EH chung
Do đó: ΔEBH=ΔECH(cạnh huyền-cạnh góc vuông)
⇒HB=HC(hai cạnh tương ứng)
c) Ta có: \(\widehat{BEC}\) là góc ngoài tại đỉnh E của ΔABE(EA và EC là hai tia đối nhau)
nên \(\widehat{BEC}=\widehat{BAE}+\widehat{ABE}\)(định lí góc ngoài của tam giác)
\(\Rightarrow\widehat{BEC}=90^0+30^0=120^0\)
Ta có: ΔEBH=ΔECH(cmt)
⇒\(\widehat{BEH}=\widehat{CEH}\)(hai góc tương ứng)
mà \(\widehat{BEH}+\widehat{CEH}=\widehat{BEC}\)(tia EH nằm giữa hai tia EB,EC)
nên \(\widehat{BEH}=\widehat{CEH}=\frac{\widehat{BEC}}{2}=\frac{120^0}{2}=60^0\)
\(\Leftrightarrow\widehat{KEH}=60^0\)
Ta có: HK//BE(gt)
⇒\(\widehat{BEH}=\widehat{KHE}\)(hai góc so le trong)
mà \(\widehat{BEH}=60^0\)(cmt)
nên \(\widehat{KHE}=60^0\)
Xét ΔKHE có
\(\widehat{KEH}=60^0\)(cmt)
\(\widehat{KHE}=60^0\)(cmt)
Do đó: ΔKHE đều(dấu hiệu nhận biết tam giác đều)
d) Xét ΔAEI vuông tại A có EI là cạnh huyền(EI là cạnh đối diện với \(\widehat{EAI}=90^0\))
nên EI là cạnh lớn nhất trong ΔAEI(trong tam giác vuông, cạnh huyền là cạnh lớn nhất)
hay EI>EA
mà EA=EH(ΔBAE=ΔBHE)
nên IE>EH(đpcm)
Xét \(\Delta ABD\) và \(\Delta EBD\) , ta có :
\(\widehat{BAD}=\widehat{BED}=90^0\)
\(BD\) là cạnh huyền
\(\widehat{ABD}=\widehat{EBD}\) ( vì \(BD\) là phân giác của \(\widehat{BAC}\))
Do đó : \(\Delta ABD=\Delta EBD\left(ch-gn\right)\)
\(\Rightarrow AB=BE\) ( vì hai cạnh tương ứng )
a: Xét ΔACE vuông tại C và ΔAKE vuông tại K có
AE chung
góc CAE=góc KAE
=>ΔACE=ΔAKE
=>AC=AK và EC=EK
=>AE là trung trựccủa CK
b: Xét ΔEAB có góc EAB=góc EBA
nên ΔEAB cân tại E
mà EK là đường cao
nên K là trung điểm của AB
=>KA=KB
c: EB=EA
EA>AC
=>EB>AC
Xét \(\Delta ABD\)và \(\Delta EBD\); ta có :
Góc \(BAD=\)Góc \(BED=90^o\)
Cạnh huyền \(BD\)chung
Góc \(ABD=\)Góc \(EBD\) ( Vì BD là phân giác góc BAC )
\(\Rightarrow\Delta ABD=\Delta EBD\)(cạnh huyền - góc nhọn )
\(\Rightarrow AB=BE\)(2 cạnh tương ứng)
Vậy ...
bạn xem lại thử có bị lộn đề ko nhé
Sai đề!!