K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 2 2022

từ đề suy ra:

\(\widehat{BAC}=\widehat{DAC}.2=30^o.2=60^o\)

\(\widehat{ABC}=2.\widehat{EBC}=2.30^o=60^o\)

áp dụng đl tổng 3 góc trong của một tam giác :

\(\widehat{ACB}+\widehat{BAC}+\widehat{ABC}=180^o\)

\(\widehat{ACB}+60^o+60^o=180^o\)

\(\Rightarrow\widehat{ACB}=60^o\)

Xét tam giác ABC có 3 góc trong đều bằng nhau và bằng 60\(^o\)

suy ra : ABC là tam giác đều(đpcm)

14 tháng 2 2022

-Ủa vậy chị vẽ hình chưa?

27 tháng 2 2020

câu a) mình nghĩ chứng minh ABD cân chứ ạ, sao lại ABC

27 tháng 2 2020

Gọi H là trung điểm của AC. \(\Delta\)DAC cân tại D.

Do đó DH\(\perp\)AC và AH = \(\frac{1}{2}\)AC (1)

Vẽ AK \(\perp\)BC. Vì \(\Delta\)AKC vuông tại K và ^BCA = 300

nên AK = \(\frac{1}{2}\)AC (2)

Từ (1) và (2) suy ra AK = AH

Xét \(\Delta\)AKB và \(\Delta\)AHD có:

    ^AKB = ^AHD (=900)

    AK = AH(gt)

    ^BAK = ^DAH (=500)

Do đó  \(\Delta\)AKB = \(\Delta\)AHD (g.c.g)

=> AB = AD

Vậy \(\Delta\)ABD cân tại A(đpcm)

Xét (O) có

\(\widehat{ABC}\) là góc nội tiếp chắn cung AC

\(\widehat{ADC}\) là góc nội tiếp chắn cung AC

Do đó: \(\widehat{ABC}=\widehat{ADC}\)(Hệ quả góc nội tiếp)

hay \(\widehat{ABH}=\widehat{ADC}\)(1)

Xét (O) có 

ΔADC nội tiếp đường tròn(A,D,C∈(O))

AD là đường kính(gt)

Do đó: ΔADC vuông tại C(Định lí)

Suy ra: \(\widehat{DAC}+\widehat{ADC}=90^0\)(Hai góc nhọn phụ nhau)(2)

Ta có: ΔABH vuông tại H(AH⊥BC)

nên \(\widehat{BAH}+\widehat{ABH}=90^0\)(Hai góc nhọn phụ nhau)(2)

Từ (1) và (2) suy ra \(\widehat{BAH}=\widehat{DAC}\)(đpcm)

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H1. Chứng minh tam giác ABE và tam giác ACF đồng dạngXét \(\Delta ABE\) và \(\Delta ACF\) :\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )\(\widehat{A}\) chung\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)Xét tam giác AEF và tam giác...
Đọc tiếp

Bài 1.CHo tam giác nhọn ABC có các đường cao AD , BE , CF cắt nhau tại H

1. Chứng minh tam giác ABE và tam giác ACF đồng dạng

Xét \(\Delta ABE\) và \(\Delta ACF\) :

\(\widehat{AEB}=\widehat{AFC}\) (\(=90^o\) )

\(\widehat{A}\) chung

\(\Rightarrow\Delta ABE\sim\Delta ACF\left(g.g\right)\)

2.Chứng minh \(\widehat{AEF}=\widehat{ABC}\)

Vì tam giác ABE đồng dạng với tam giác ACF ( cmt )

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{AF}{AE}\)

Xét tam giác AEF và tam giác ABC:

\(\widehat{A}\) chung

\(\dfrac{AB}{AC}=\dfrac{AF}{AE}\) (cmt )

\(\Rightarrow\Delta AEF\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\widehat{AEF}=\widehat{ABC}\) ( hai góc t/ứ)

3.Vẽ DM vuông gosc với AC tại M . Gọi K là giao điểm của CH và DM . Chứng minh \(\dfrac{BH}{EH}=\dfrac{DK}{MK}\) và \(AH.AD+CH.CF=\dfrac{CD^4}{CM^2}\)

Bài 2 : Cho ba số \(x,y,z\) khác 0 và \(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=0\) . Tính giá trị của biểu thức \(P=\dfrac{2017}{3}xyz\left(\dfrac{1}{x^3}+\dfrac{1}{y^3}+\dfrac{1}{z^3}\right)\)

 

3
NV
22 tháng 4 2021

\(BE||DM\) (cùng vuông góc AC)

Theo định lý Talet: \(\left\{{}\begin{matrix}\dfrac{MK}{EH}=\dfrac{CK}{CH}\\\dfrac{DK}{BH}=\dfrac{CK}{CH}\end{matrix}\right.\) \(\Rightarrow\dfrac{MK}{EH}=\dfrac{DK}{BH}\)

\(\Rightarrow\dfrac{BH}{EH}=\dfrac{DK}{MK}\)

Hai tam giác vuông AHE và ACD đồng dạng (chung góc A) \(\Rightarrow\dfrac{AH}{AC}=\dfrac{AE}{AD}\Rightarrow AH.AD=AC.AE\)

Tương tự CHE đồng dạng CAF \(\Rightarrow\dfrac{CH}{AC}=\dfrac{CE}{CF}\Rightarrow CH.CF=AC.CE\)

\(\Rightarrow AH.AD+CH.CF=AC.AE+AC.CE=AC\left(AE+CE\right)=AC^2\) (1)

Lại có 2 tam giác vuông ACD và DCM đồng dạng (chung góc C)

\(\Rightarrow\dfrac{AC}{CD}=\dfrac{CD}{CM}\Rightarrow AC=\dfrac{CD^2}{CM}\Rightarrow AC^2=\dfrac{CD^4}{CM^2}\) (2)

(1); (2) suy ra đpcm

NV
22 tháng 4 2021

undefined