cho a và b là các số tự nhiên thỏa mãn a^2+b^2 chia hết 7. chứng minh rằng a và b đều chia hết cho 7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dễ chứng minh được với 1 số chính phương khi chia cho 7 ta chỉ có các khả năng dư: 0 , 1 , 2 , 4
Khi đó \(a^2+b^2\) chia 7 sẽ có các khả năng dư sau: 0 ; 1 ; 2 ; 3 ; 4 ; 6 ; 7
Mà theo đề bài \(a^2+b^2\) chia hết cho 7 nên sẽ chỉ duy nhất 1 khả năng là \(\hept{\begin{cases}a^2⋮7\\b^2⋮7\end{cases}}\)
Vì 7 là số nguyên tố => a và b đều chia hết cho 7
=> đpcm
Ta cóL
a+5b chia hết cho 7
=> 10(a+5b)=10a+50b chia hết cho 7
Mà 49b chia hết cho 7
=> 10a+50b-49b chia hết cho 7
=> 10a+b chia hết cho 7
Có: a+5b chia hết cho 7
=> 2.(a+5b)\(⋮\) 7
\(\Leftrightarrow2a+10b⋮7\)
\(\Rightarrow2a+10-7b\) chia hết cho 7 ( do 7b chia hết cho 7 )
\(\Leftrightarrow2a+3b\) chia hết cho 7
=> điều phải chứng minh
gọi a=3p+r
b=3q+r
xét a-b= (3p+r)-(3q+r)
=3p + r - 3q - r
=3p+3q =3.(p+q) chia hết cho 3
các câu sau làm tương tự
Nhận thấy một số chính phương khi chia cho 7 có các số dư: 0,1,2,4. Xét các trường hợp:
+) Nếu một trong 2 số chia hết cho 7 thì hiển nhiên số còn lại cũng chia hết cho 7.
+) Nếu cả 2 số đều không chia hết cho 7, ta thấy trong 3 số 1,2,4 không có 2 số nào có tổng chia hết cho 7 => \(a^2+b^2\) không chia hết cho 7.
Vậy ta có đpcm.