K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Gọi a=UCLN(2k+1;2k+3)

\(\Leftrightarrow2k+3-2k-1⋮a\)

\(\Leftrightarrow2⋮a\)

mà 2k+1 là số lẻ

nên a=1

=>2k+1 và 2k+3 là hai số nguyên tố cùng nhau

b: Gọi a=UCLN(n+1;n+2)

\(\Leftrightarrow n+2-n-1⋮a\)

\(\Leftrightarrow1⋮a\)

=>a=1

=>n+1 và n+2 là hai số nguyên tố cùng nhau

19 tháng 11 2016

Gọi d là ƯCLN(2n+5;3n+7)

Theo đề bài ra ta có: 2n+5 chia hết cho d => 3(2n+5)= 6n+15 chia hết cho d

                                  3n+7 chia hết cho d => 2(3n+7)=6n+14 chia hết cho d

Vì 6n+15 chia hết cho d

    6n+14 chia hết cho d

=> (6n+15)-(6n+14)=1 chia hết cho d

=> d thuộc Ư(1)={1;-1}

Vì d thuộc Ư của 1 => 2n+5 và 3n+7 nguyên tố cùng nhau       ĐPCM

19 tháng 11 2016

2n + 5 và 3n + 7

gọi d là UWCLN(2n + 5 ; 3n + 7 )

=> 2n + 5 : d => 3(2n+5) = 6n+ 15 :d

và 3n + 7 : d => 2(3n+7) = 6n + 14 : d

=> 6n + 15 - 6n + 14= 1

vậy 2n + 5 và 3n + 7 là số nguyên tố cùng nhau

k mik nhé

4 tháng 8 2016

Gọi d là ƯCLN (2n + 5 ; 3n + 7)
Ta có: 2n + 5 chia hết cho d ; 3n + 7 chia hết cho d
=> 3(2n + 5) chia hết cho d ; 2(3n + 7) chia hết cho d

=> 3(2n + 5) - 2(3n + 7) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=>                        1 chia hết cho d

2n + 5 và 3n + 7 có ƯCLN là 1, vậy 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau.

4 tháng 8 2016

Gọi d là ƯCLN (2n + 5 ; 3n + 7)
Ta có: 2n + 5 chia hết cho d ; 3n + 7 chia hết cho d
=> 3(2n + 5) chia hết cho d ; 2(3n + 7) chia hết cho d

=> 3(2n + 5) - 2(3n + 7) chia hết cho d

=> 6n + 15 - 6n - 14 chia hết cho d

=>                        1 chia hết cho d

2n + 5 và 3n + 7 có ƯCLN là 1, vậy 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau.

14 tháng 11 2017

gọi d là ucln cua 3n+1 va 4n+1

3n+1 \(⋮\)\(\Rightarrow\)4(3n+1) =12n+4 \(⋮\)d ;4n+1 \(⋮\)\(\Rightarrow\)3(4n+1)=12n+3 \(⋮\)d

12n+4-(12n+3) =1\(⋮\)\(\Rightarrow\)d=1 Vậy ....

14 tháng 11 2017

Giải 
Gọi ƯCLN(3n+1;4n+1) là d 
=>\(\hept{\begin{cases}3n+1:d\\4n+1:d\end{cases}}\)=>\(\hept{\begin{cases}4\left(3n+1\right):d\\3\left(4n+1\right):d\end{cases}}\)=>\(\hept{\begin{cases}12n+4:d\\12n+3:d\end{cases}}\)=>(12n+4)-(12n+3)=1:d=>d thuộc Ư(1)={1}
=> ƯCLN(3n+1;4n+1)=1 => 2 số 3n+1;4n+1 nguyên tố cùng nhau (đpcm)

15 tháng 10 2023

1:

a: Gọi d=ƯCLN(n+5;n+4)

=>\(\left\{{}\begin{matrix}n+5⋮d\\n+4⋮d\end{matrix}\right.\)

=>\(n+5-n-4⋮d\)

=>\(1⋮d\)

=>d=1

=>n+4 và n+5 là hai số nguyên tố cùng nhau

b: Gọi d=ƯCLN(2n+5;n+2)

=>\(\left\{{}\begin{matrix}2n+5⋮d\\n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2n+5⋮d\\2n+4⋮d\end{matrix}\right.\)

=>\(2n+5-2n-4⋮d\)

=>\(1⋮d\)

=>d=1

=>2n+5 và n+2 là hai số nguyên tố cùng nhau

c: Gọi d=ƯCLN(3n+7;n+2)

=>\(\left\{{}\begin{matrix}3n+7⋮d\\n+2⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3n+7⋮d\\3n+6⋮d\end{matrix}\right.\)

=>\(3n+7-3n-6⋮d\)

=>\(1⋮d\)

=>d=1

=>3n+7 và n+2 là hai số nguyên tố cùng nhau

d: Gọi d=ƯCLN(2n+1;3n+1)

=>\(\left\{{}\begin{matrix}2n+1⋮d\\3n+1⋮d\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}6n+3⋮d\\6n+2⋮d\end{matrix}\right.\)

=>\(6n+3-6n-2⋮d\)

=>\(1⋮d\)

=>d=1

=>2n+1 và 3n+1 là hai số nguyên tố cùng nhau

15 tháng 10 2023

a) Gọi d là ƯCLN  của n + 4 và n + 5 

⇒ n + 4 ⋮ d và n + 5 ⋮ d 

⇒ (n + 5 - n - 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy n + 4 và n + 5 luôn là cặp SNT cùng nhau 

b) Gọi d là ƯCLN của 2n + 5 và n + 2

⇒ 2n + 5 ⋮ d và n + 2 ⋮ d

⇒ 2n + 5 ⋮ d và 2(n + 2) ⋮ d

⇒ (2n + 5 - 2n - 4) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy  2n + 5 và n + 2 luôn là cặp SNT cùng nhau 

c) Gọi d là ƯCLN của n + 2 và 3n + 7 

⇒ n + 2 ⋮ d và 3n + 7 ⋮ d

⇒ 3(n + 2) ⋮ d và 3n + 7 ⋮ d

⇒ (3n + 7 - 3n - 6) ⋮ d 

⇒ 1 ⋮ d 

⇒ d = 1

Vậy n + 2 và 3n + 7 luôn là cặp SNT cùng nhau

d) Gọi d là ƯCLN của 2n + 1 và 3n + 1

⇒ 2n + 1 ⋮ d và 3n + 1 ⋮ d

⇒ 3(2n + 1) ⋮ d và 2(3n + 1) ⋮ d

⇒ (6n + 3 - 6n - 2) ⋮ d

⇒ 1 ⋮ d

⇒ d = 1

Vậy 2n + 1 và 3n + 1 luôn là cặp SNT cùng nhau 

gọi ƯCLN(2n+5, 3n+7) là d 
ta có 2n+5 chia hết cho d => 3(2n+5) chia hết cho d <=> 6n+15 chia hết cho d(1) 
3n+7 chia hết cho d => 2(3n+7) chia hết cho d <=> 6n+14 chia hết cho d(2) 
=> (6n+15) -( 6n+14) chia hết cho d hay 1 chia hết cho d --> 2n+5, 3n+7 ngtố cùng nhau

mk chỉ biết làm câu b mong bạn thông cảm

25 tháng 10 2018

Ta có:

2 số lẻ liên tiếp là

2k+1 và 2k+3

Đặt số d

Ta có:

2k+3 CHIA HẾT CHO d

2k+1 CHIA HẾT CHO d

Ta có

2k+3-(2k+1) CHIA HẾT CHO d

=>2 CHIA HẾT CHO d

nhưng 2k+3 là số lẻ

=>2k+3 KHÔNG CHIA HẾT CHO 2

Vậy d=1

=> 2 số lẻ liên tiếp luôn luôn là 2 SỐ NGUYÊN TỐ CÙNG NHAU

b, Đặt ƯCLN của 2n+3;3n+7 là D

Ta có:

2n+5 CHIA HẾT CHO D

3n+7 CHIA HẾT CHO D

=>

3(2n+5)-2(3n+7) CHIA HẾT CHO D

=>1 CHIA HẾT CHO D

=> D THUỘC ƯCLN LÀ 1

=> 2n+5 và 3n+7 luôn luôn là 2 SỐ NGUYÊN TỐ CÙNG NHAU

19 tháng 11 2017

a, gọi 2 số lẻ đó là 2k+1 và 2k+3
gọi ước chung lớn nhất của 2 số lẻ đó là p
=>2k+1 chia hết cho p; 2k+3 chia hết cho p
=>2k+3-2k-1=2 chia hết cho p
=>p=1;2
trường hợp p=2 loại vì 2k+1 và 2k+3 lẻ

19 tháng 11 2017

a ,Gọi 2 số lẻ là 2k+1 ; 2k+2 

Gọi Ư CNN  2k+1 và 2k+3 là d 

ta có :

2k+3-2k+1=2 

d thuộc  ƯC (2) ={1;2}

Mà d không thể bằng 2 vì 2k+1 và 2k+3 là số lẻ 

Vậy d = 1

b,Gọi ƯCNN 2n+5và 3n+7 là d 

ta có :

3 .( 2n + 5  )chia hết cho d. =6n+15 chia hết cho d

2.( 3n +7 )chia hết cho d.= 6n+14chia hết cho d

(6n + 15 ) - ( 6n + 14 )  = 6n +15  - 6n -14 =1 

d thuộc ƯC (1 ) ={1}

Vậy 2n + 5 và 3n+ 7là 2 số nguyên tố cùng nhau

20 tháng 11 2015

a)Giải: Gọi hai số lẻ liên tiếp là 2n + 1 và 2n + 3 (n \(\in\) N).

Ta đặt ƯCLN (2n + 1, 2n + 3) = d.
Suy ra 2n + 1chia hết cho d; 2n + 3 chia hết cho d.

Vậy (2n + 3) – ( 2n + 1) chia hết cho d

Hay 2 chia hết cho d, suy ra d \(\in\) { 1 ; 2 }. Nhưng d \(\ne\) 2 vì d là ước của các số lẻ. Vậy d = 1, điều đó chứng tỏ 2n + 1 và 2n + 3 là hai số nguyên tố cùng nhau. 

20 tháng 11 2015

dài quá bn tick mình mới làm

24 tháng 7 2023

Câu 1: 2n + 5 và 3n + 7

    Gọi ước chung lớn nhất của 2n + 5 và 3n + 7 là d

        Theo bài ra ta có: 

         \(\left\{{}\begin{matrix}2n+5⋮d\\3n+7⋮d\end{matrix}\right.\)

     ⇔ \(\left\{{}\begin{matrix}6n+15⋮d\\6n+14⋮d\end{matrix}\right.\)

          6n + 15 -  6n  - 14 ⋮ d

                                    1 ⋮ d

         ⇒ d = 1

Vậy ước chung lớn nhất của 2n + 5 và 3n + 7 là 1

Hay 2n + 5 và 3n + 7 là hai số nguyên tố cùng nhau (đpcm)

24 tháng 7 2023

gọi 2.n +1 là một số lẻ bất kì (n thuộc N )

suy ra 2n +1 và 2n+3 là 2 số lẻ liên tiếp  

gọi d thuoocj vào ƯC(2n+1,2n+3 )  (d thuộc N*)

suy ra 2n+1 và 2n+3 chia hết cho d 

suy ra [(2n+3) - (2n+1)] chia hết cho d 

suy ra 2 chia hết cho d

suy ra d thuộc Ư(2) ={1;2}

 suy ra d khác 2 (vì  2n+1 và 2n+3 là các số lẻ )

suy ra d =1 

suy ra ƯC (2n+1 ,2n+3 ) =1

suy ra UWCLN (3n+1 , 2n+3) =1

suy ra 2n +1 và 2n+3 nguyên tố cùng nhau 

vậy 2 số lẻ liên tiếp luôn nguyên tố cùng nhau .