Cho đường thẳng y=mx (d1) và y=nx (d2). Tìm m và n sao cho hệ số góc (d1) gấp 4 lần hệ số góc (d2) và góc tạo bởi (d1) với Ox gấp 2 góc tạo bởi (d2) với Ox
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
cho 2 đường thẳng
(d1):y=mx+m-3
(d2):y=1mx+1−mm1mx+1−mm
a/ CM: (d1) qua điểm cố định A
(d2) đi qua điểm cố định B
b/ (d1) cắt (d2) tại C
CM: C ∈∈ đường cố định
Bạn có thể giải chi tiết một chút cho mình được không ạ?
\(b,\text{PT hoành độ giao điểm: }2x+1=x-1\Leftrightarrow x=-2\Leftrightarrow y=-3\Leftrightarrow A\left(-2;-3\right)\\ c,\text{Gọi góc đó là }\alpha\\ \text{Vì }1>0\Leftrightarrow\alpha< 90^0\\ \text{Hệ số góc }\left(d_2\right):1\Leftrightarrow\tan\alpha=1\\ \Leftrightarrow\alpha=45^0\)
Hoành độ giao điểm của \(d_1\) và \(d_2\)
Là nghiệm phương trình:
\(2x+1=x-1\) nên \(x=-2\)
Với \(x=-2\) thì \(y=2.\left(-2\right)+1=-3\)
Vậy\(2\)đường thẳng \(d_1\) và \(d_2\) cắt nhau tại \(A\left(-2;-3\right)\)
Để ba đường thẳng đã cho đồng quy thì điểm \(A\left(-2;-3\right)\) thuộc đồ thị hàm số \(y=\left(m+1\right)x-2\)
Suy ra: \(-3=\left(m+1\right).\left(-2\right)-2\)
\(\Leftrightarrow-3=-2m-2-2\Leftrightarrow-3=-2m-4\)
\(\Leftrightarrow-2m=1\Leftrightarrow m=-\dfrac{1}{2}\)