Cho x,y,z > 0 và x + y + z = 10
Tìm min P = \(\frac{xy}{z}\) + \(\frac{yz}{x}\) + \(\frac{zx}{y}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\frac{\sqrt{1+x^2+y^2}}{xy}+\frac{\sqrt{1+y^2+z^2}}{yz}+\frac{\sqrt{1+z^2+x^2}}{zx}\)
\(\ge\text{Σ}\frac{\sqrt{\frac{\left(1+x+y\right)^2}{3}}}{xy}\text{=}\frac{1+x+y}{xy\sqrt{3}}\)
\(=\frac{\sqrt{3}}{3}\left(\frac{1+x+y}{xy}+\frac{1+y+z}{yz}+\frac{1+z+x}{zx}\right)\)
\(=\frac{\sqrt{3}}{3}\left(\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}+\frac{1}{x}+\frac{1}{y}+\frac{1}{y}+\frac{1}{z}+\frac{1}{z}+\frac{1}{x}\right)\)
\(=\frac{\sqrt{3}}{3}\left(x+y+z+2xy+2yz+2zx\right)\)\(\ge\frac{\sqrt{3}}{3}\left(3\sqrt[3]{xyz}+2\cdot3\sqrt[3]{x^2y^2z^2}\right)=\frac{\sqrt{3}}{3}\left(3+6\right)=3\sqrt{3}\)
Dấu = xảy ra khi \(x=y=z=1\)
Áp dụng bất đẳng thức AM-GM ta có :
\(\frac{xy}{z}+\frac{yz}{x}\ge2\sqrt{\frac{xy}{z}\cdot\frac{yz}{x}}=2\sqrt{y^2}=2y\)(1)
\(\frac{yz}{x}+\frac{zx}{y}\ge2\sqrt{\frac{yz}{x}\cdot\frac{zx}{y}}=2\sqrt{z^2}=2z\)(2)
\(\frac{xy}{z}+\frac{zx}{y}\ge2\sqrt{\frac{xy}{z}\cdot\frac{zx}{y}}=2\sqrt{x^2}=2x\)(3)
Cộng (1),(2),(3) theo vế
=> \(2\left(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\right)\ge2\left(x+y+z\right)\)
<=> \(\frac{xy}{z}+\frac{yz}{x}+\frac{zx}{y}\ge x+y+z=10\)
hay \(P\ge10\)
Đẳng thức xảy ra <=> x = y = z = 10/3
Vậy MinP = 10