Tính nhanh
A=\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+....+\frac{1}{132}=?\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tính tổng
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.........+\frac{1}{110}+\frac{1}{132}\)
=1/1*2+1/2*3+1/3*4+...+1*10*11+1/11*12=1-1/2+1/2-1/3+1/3-1/4+...+1/10-1/11+1/11-1/12
=1-1/12=11/12.
\(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{110}+\frac{1}{132}\)
\(=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{10\times11}+\frac{1}{11\times12}\)
\(=1-\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{11}+\frac{1}{12}\)
\(=1-\frac{1}{12}\)
\(=\frac{11}{12}\)
\(S=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}+\frac{1}{156}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{11.12}+\frac{1}{12.13}\)
\(S=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}+\frac{1}{12}-\frac{1}{13}\)
\(S=\frac{1}{1}-\frac{1}{13}\)
\(S=\frac{12}{13}\)
\(S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{12.13}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.....+\frac{1}{12}-\frac{1}{13}\)
\(=1-\frac{1}{13}\)
\(=\frac{12}{13}\)
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right)\div x=\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{32}\right)\)
\(\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right)\div x=\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\right)\)
\(\frac{15}{16}\div x=\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\right)\)
\(\frac{15}{16}\div x=\left(\frac{1}{1}-\frac{1}{12}\right)\)
\(\frac{15}{16}\div x=\frac{11}{12}\)
\(x=\frac{15}{16}\div\frac{11}{12}\)
\(x=\frac{15}{16}\times\frac{12}{11}\)
\(\Rightarrow x=\frac{180}{176}=\frac{45}{44}\)
Ta có \(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)
\(\frac{15}{16}:x=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)
\(\frac{15}{16}:x=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{11}-\frac{1}{12}\)
\(\frac{15}{16}:x=1-\frac{1}{12}\)
\(\frac{15}{16}:x=\frac{11}{12}\)
\(x=\frac{15}{16}:\frac{11}{12}\)
\(x=\frac{180}{176}\)
Đúng thì like nha
\(=\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{11.12}\)
\(=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(=\frac{1}{2}-\frac{1}{12}\)
\(=\frac{5}{12}\)
bn sẽ tinh theo kieeuranhaan 2 nha xin lỗi mik làm bi này rùi nhưng mik quên mik có sacks xem lại
+ \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+\frac{1}{8}\)
=> \(2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)
=> \(A=2A-A=1-\frac{1}{16}=\frac{15}{16}\)
+ \(B=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+...+\frac{1}{11x12}\)
\(B=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{12-11}{11x12}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(B=1-\frac{1}{12}=\frac{11}{12}\)
\(A:x=B\Rightarrow x=A:B=\frac{15}{16}:\frac{11}{12}=\frac{15}{16}x\frac{12}{11}=\frac{45}{44}=1\frac{1}{44}\)
\(\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\right):x=\frac{1}{2}+\frac{1}{6}+....+\frac{1}{32}\)
\(\left(\frac{8}{16}+\frac{4}{16}+\frac{2}{16}+\frac{1}{16}\right):x=\frac{1}{1\times2}+\frac{1}{2\times3}+.....+\frac{1}{11\times12}\)
\(\frac{15}{16}:x=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-....-\frac{1}{12}\)
\(\frac{15}{16}:x=1-\frac{1}{12}\)
\(\frac{15}{16}:x=\frac{11}{12}\)
\(x=\frac{15}{16}:\frac{11}{12}\)
\(x=\frac{45}{44}\)
Tính \(A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}\)
2 x A = \(1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}\)
2 x A - A = A = \(1-\frac{1}{16}=\frac{15}{16}\)
Tính \(B=\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{132}=\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{11\times12}\)
\(B=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{11}-\frac{1}{12}=\frac{1}{1}-\frac{1}{12}=\frac{11}{12}\)
Ta có: \(\frac{15}{16}:x=\frac{11}{12}\Rightarrow x=\frac{15}{16}:\frac{11}{12}=\frac{15}{16}\times\frac{12}{11}=\frac{45}{44}\)
Vậy...
Ta co \(\frac{1}{a}-\frac{1}{a+1}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a+1}=\frac{a+1-a}{a\left(a+1\right)}=\frac{1}{a\left(a+1\right)}\)
Vay \(\frac{1}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
Ap dung cong thuc tren:
=> A = \(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+.....+\frac{1}{132}\)
A = \(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+....+\frac{1}{11.12}\)
A = \(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{11}-\frac{1}{12}\)
A = \(\frac{1}{2}-\frac{1}{12}\)
A = \(\frac{5}{12}\)
Ta có: \(\frac{1}{a\left(a+1\right)}=\frac{\left(a+1\right)-a}{a\left(n+1\right)}=\frac{a+1}{a\left(a+1\right)}-\frac{a}{a\left(a+1\right)}=\frac{1}{a}-\frac{1}{a+1}\)
=> đpcm
\(A=\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{132}\)
\(A=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{11.12}\)
\(A=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{2}-\frac{1}{12}\)
\(A=\frac{5}{12}\)
\(\frac{1}{12}\)+\(\frac{1}{20}\)+1/30+1/42+1/56+1/72+1/90+1/110+1/132
=\(\frac{1}{3\cdot4}\)+\(\frac{1}{4.5}\)+1/5x6+1/6x7+1/7x8+1/8x9+...1/11x12
=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11-1/12
=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11--1/12
=1/3-1/12
=1/4
Xin lỗi bạn nhé!vì trưa rồi nên mình làm vậy cho nhanh thôi!hjhj!
Nếu thấy mình làm đúng thì k mình nha!Thanks các bạn nhìu!
=1/3-1/4+1/4-1/5+1/5-1/6+1/6-1/7+1/7-1/8+1/8-1/9+1/9-1/10+1/10-1/11+1/11+1/12
=1/3-1/12
=4/12-1/12
=3/12
=1/4
A=1/2+1/6+1/12+...+1/132
=1/1.2+1/2.3+1/3.4+...+1/11.12
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/11-1/12
=1-1/12
=11/12
A=1/2+1/6+1/12+...+1/132
=1/1.2+1/2.3+1/3.4+...+1/11.12
=1/1-1/2+1/2-1/3+1/3-1/4+...+1/11-1/12
=1-1/12
=11/12
Vậy A=11/12