Cho tam giác ABC vuông tại A tia phân giác của góc ABC cắt AC tại M kẻ MK vuông góc BC gọi H là giao điểm của tia BA và tia KM. chứng minh.
a) tam giác ABM bằng tam giác KBM
b)AM=KM va MC lon hon AM
C)HC song song AK
nhớ kẻ hình giúp mình nha.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Xét tam giác ABM và tam giác KBM có:
góc ABM = góc MBC ( vì BM là tia phân giác của góc ABC )
BM cạnh chung
góc BAM = góc BKM ( =90°)
=> tam giác ABM = tam giác KBM ( cạnh huyền- góc nhọn )
b, * AM = KM:
Vì tam giác ABM = tam giác KBM ( câu a )
=> AM = KM ( 2 cạnh tương ứng )
* MC > AM:
Vì tia phân giác góc ABC cắt AC ở M => điểm A, điểm M, điểm c cùng nằm trên một đoạn thẳng.
Ta có : AM + MC = AC
=> MC = AC - AM
=> MC > AM
d, tam giác ABC vuông tại A
=> BC bình = AC bình + AC bình
=> 15 bình = 9 bình + AC bình
=> 225 = 81 + AC bình
=> AC bình = 225 - 81
=> AC bình = 144
=> AC = 12 cm.
a: BC=căn 6^2+8^2=10cm
b: Xét ΔABM vuông tại A và ΔKBM vuông tại K có
BM chung
góc ABM=góc KBM
=>ΔBAM=ΔBKM
c: AM=MK
MK<MC
=>AM<MC
d: Xét ΔMAD vuông tại A và ΔMKC vuông tại K có
MA=MK
góc AMD=góc KMC
=>ΔMAD=ΔMKC
=>AD=KC
Xét ΔBDC có BA/AD=BK/KC
nên AK//DC
Hình tự vẽ
a, \(\Delta BAM\)và \(\Delta BDM\)có
\(\widehat{ABM}=\widehat{DBM}\left(gt\right)\)
\(AM\): cạnh chung
\(\widehat{BAM}=\widehat{BDM}\left(=90^o\right)\)
\(\Rightarrow\Delta BAM=\Delta BDM\left(ch-gn\right)\)
\(\Rightarrow BA=BD\)(2 cạnh tương ứng )
Để nghĩ tiếp :(
Ta có:
∠AMB+∠ABM=90o
∠BMD+∠MBD=900
Mà ∠AMB=∠BMD (gt)
=> ∠ABM=∠MBD
Xét ΔBAM và ΔBAM có:
∠ABM=∠MBD (gt)
BM chung
∠ABM=∠MBD (cmt)
=> ΔBAM = ΔBAM (g-c-g)
=> BA=BD (2 cạnh tương ứng)
b,Xét ΔABC và ΔDBE có:
∠ABC chung
∠BAC=∠BDM=90o
BA=BD (cmt)
=> ΔABC = ΔDBE (g-c-g)
c,Ta có
BC⊥ED
AK⊥ED
=> BC//AK hay BC//AN
=> ∠ANM=∠MBC ( 2 góc slt) (1)
Mà:
DH⊥AC
BA⊥AC
=> BA//DH hay BA//DN
=> ∠MND=∠ABM ( 2 góc so le trong) (2)
Mà ∠ABM=∠MBD ( vì BM là tia phân giác của góc ABC)
Từ(1) và (2) =>∠ANM=∠MND
=> NM là tia phân giác của góc HMK
d,Ta có BM là tia phân giác của góc ABC (3)
Và NM là tia phân giác của góc HMK
Vì ∠ANM=∠MBC
∠MND=∠ABM
=> ∠ANM=∠MBC=∠MND=∠ABM
=> BN là tia phân giác của góc ABC (4)
Từ (3) và (4) => B,M,N thẳng hàng
a, xét tam giác ABM và tam giác KBM có: AB=BK, BM chung, góc ABM= góc KBM
suy ra 2 tam giác trên bằng nhau
hok tốt
tu ve hinh :
xet tamgiac ABM va tamgiac KBM co : MB chung
goc ABM = goc MBK do BM la phan giac cua goc ABC (gt)
AB = AK (gt)
=> tammgiac ABM = tamgiac KBM (c - g - c)
a, vì tia BD là tia pg của góc B =) góc DBC bằng 1/2 của góc B
=) CB ko song song với BD nên cũng ko song song với a
=) a cắt BC