K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2017

Gọi biểu thức trên là A, ta có :

A = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

A x 3 = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

A x 3 = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

A x 3 = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

A x 3 = 99x100x101

A = 99x100x101 : 3

A = 333300

12 tháng 8 2017

sai thì thui nhá,mk hok ngu lắm

11 tháng 7 2020

S=1x2+2x3+3x4+4x5+...+98x99

3S= 1.2.3+ 2.3.3 + 3.4.3 + 4.5.3+...+98.99.3

3S= 1.2.3+ 2.3(4-1) + 3.4(5-2) + 4.5(6-3)+....+ 98.99.(100-97)

3S= 1.2.3 + 2.3.4 -1.2.3 + 3.4.5 - 2.3.4 +...+98.99.100 -97.98.99

3S= 98.99.100

S=970200:3

S= 323400

11 tháng 7 2020

Bài làm:

\(S=1.2+2.3+3.4+...+98.99\)

\(S=\frac{1}{3}\left(1.2.3+2.3.3+3.4.3+...+98.99.3\right)\)

\(S=\frac{1}{3}\left[1.2.3+2.3.\left(4-1\right)+3.4.\left(5-2\right)+...+98.99.\left(100-97\right)\right]\)

\(S=\frac{1}{3}\left(1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-97.98.99+98.99.100\right)\)

\(S=\frac{98.99.100}{3}=323400\)

Vậy S = 323400

Học tốt!!!!

23 tháng 3 2018

\(A=\frac{1.98+2.97+3.96+...+98.1}{1.2+2.3+3.4+...+98.99}=\frac{1.\left(100-2\right)+2\left(100-3\right)+3\left(100-4\right)+...+98\left(100-99\right)}{1.2+2.3+3.4+...+98.99}\)

\(A=\frac{1.100-1.2+2.100-2.3+3.100-3.4+...+98.100-98.99}{1.2+2.3+3.4+...+98.99}\)

\(A=\frac{\left(1.100+2.100+3.100+...+98.100\right)-\left(1.2+2.3+3.4+...+98.99\right)}{1.2+2.3+3.4+...+98.99}\)

\(A=\frac{100\left(1+2+3+...+98\right)}{1.2+2.3+3.4+...+98.99}-1\)

Ta có: 1+2+3+...+98=98.99:2=4851

Đặt B=1.2+2.3+3.4+...+98.99  => 3B=1.2.3+2.3.3+3.4.3+...+98.99.3 = 1.2.3+2.3.(4-1)+3.4(5-2)+...+98.99(100-97)

=> 3B=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+98.99.100-97.98.99 = 98.99.100

=> B=33.98.100. Thay vào A được:

\(A=\frac{100.4851}{33.98.100}-1=\frac{3}{2}-1=\frac{1}{2}\)

11 tháng 11 2024

A=1/2

 

10 tháng 4 2015

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+....+\frac{1}{99\times100}\)

\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(\frac{1}{1}-\frac{1}{100}\)

\(\frac{100-1}{100}\)

\(\frac{99}{100}\)

13 tháng 8 2016

\(\frac{1}{1\times2}+\frac{1}{2\times3}+\frac{1}{3\times4}+...+\frac{1}{99\times100}\)
\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
\(\frac{1}{1}-\frac{1}{100}\)
\(\frac{100-1}{100}\)
\(\frac{99}{100}\)

 

19 tháng 3 2016

ta có :\(\frac{1}{1\cdot2}=\frac{1}{1}-\frac{1}{2}\) 

          \(\frac{1}{2\cdot3}=\frac{1}{2}-\frac{1}{3}\)

           \(\frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)

            ......

          \(\frac{1}{99\cdot100}=\frac{1}{99}-\frac{1}{100}\)

=> \(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=>A=\frac{1}{1}-\frac{1}{100}=\frac{100}{100}-\frac{1}{100}=\frac{99}{100}\)

19 tháng 7 2017

=1x2x3+2x3x3+...+98x99x3

=1x2x3+2x3x(4-1)+...+98x99x(100-97)

=1x2x3+2x3x4-1x2x3+...+98x99x100-97x98x99

=98x99x100

=970200

29 tháng 6 2016

 ta có :

S = 1x2 + 2x3 + 3x4 + 4x5 + ...+ 99x100

3S = 1x2x3 + 2x3x3 + 3x4x3 + 4x5x3 + ... + 99x100x3

3S = 1x2x3 + 2x3x(4-1) + 3x4x(5-2) + 4x5x(6-3) + ... + 99x100x(101-98)

3S = 1x2x3 + 2x3x4 - 1x2x3 + 3x4x5 - 2x3x4 + 4x5x6 - 3x4x5 + ... + 99x100x101 - 98x99x100.

3S = 99x100x101

S = 99x100x101 : 3

S = 333300

=> 100S = 333300 . 100 = 33330000

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

2 tháng 8 2016

A=1.2.3+2.3(4-1)+3.4(5-2)+4.5(6-3)+....+98.99(100-97)   "." la dau nhan

A=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+4.5.6-3.4.5+....+98.99.100-97.98.99

A=1.2.3+98.99.100

A= 970206

17 tháng 9 2017

Ta có : B = 1.2 + 2.3 + 3.4 + ..... + 98.99

=> 3B = 0.1.2 + 1.2.3 - 1.2.3 + ...... + 98.99.100

=> 3B = 98.99.100

=> B = \(\frac{98.99.100}{3}\)  = 323400

26 tháng 7 2015

Cho tổng trên là A

Ta co : 

\(A=\frac{9}{1.2}+\frac{9}{2.3}+\frac{9}{3.4}+...+\frac{9}{98.99}+\frac{9}{99.100}\)

\(A=9\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)

\(A=9\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)

\(A=9\left(\frac{1}{1}-\frac{1}{100}\right)\)

\(A=9.\frac{99}{100}\)

\(A=\frac{891}{100}\)