K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2019

 \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\)

\(=\frac{1}{2.2}+\frac{1}{3.3}+\frac{1}{4.4}+...+\frac{1}{2016.2016}\)

\(< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2015.2016}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\)

\(=1-\frac{1}{2016}\)

\(=\frac{2015}{2016}< 1\)

\(\Rightarrow A< 1\)

\(\text{Vậy }A< 1\left(\text{đpcm}\right)\)

16 tháng 8 2019

                                                                     Bài giải

 Ta có : \(\frac{1}{2^2}< \frac{1}{1\cdot2}\) ;  \(\frac{1}{3^2}< \frac{1}{2\cdot3}\) ; \(\frac{1}{4^2}< \frac{1}{3\cdot4}\)  ; ... ; \(\frac{1}{2016^2}< \frac{1}{2015\cdot2016}\)

\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2015\cdot2016}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}=1-\frac{1}{2016}=\frac{2015}{2016}< 1\)

                                   \(\Rightarrow\text{ }A< 1\)

89i  - 68i + 66666666i

= (89i - 68i) + 66666666i

= 21i + 66666666i

= 66666687i

29 tháng 3 2016

a)\(M=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}<1\)

\(\Rightarrow2M=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}<1\)

\(2M-M=\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2016^2}\right)<1\)

\(\Rightarrow M=1-\frac{1}{2016^2}\)<1

=>(DPCM)

CÂU b và c làm tương tự

29 tháng 3 2016

chtt 

nhé bn