Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau và OA=OB=2OC. gọi M là trung điểm của BC, tính cosin góc của OM và AB
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé!
Giả sử: OC = a ⇒ OB = 3/2a và OA = 3a
Xét tam giác OAB vuông tại O có: \(AB=\sqrt{OA^2+OB^2}=\dfrac{3\sqrt{5}}{2}a\)
\(\Rightarrow AM=BM=OM=\dfrac{1}{2}AB=\dfrac{3\sqrt{5}}{4}a\)
Xét tam giác OMA, có:
\(\cos\widehat{AOM}=\dfrac{OM^2+OA^2-AM^2}{2OM.OA}=\dfrac{OA}{2OM}=\dfrac{2\sqrt{5}}{5}\)
Xét tam giác OMB, có:
\(\cos\widehat{BOM}=\dfrac{OM^2+OB^2-BM^2}{2OM.OB}=\dfrac{OB}{2OM}=\dfrac{\sqrt{5}}{4}\)
Ta có: \(\overrightarrow{OM}.\overrightarrow{AB}=\overrightarrow{OM}\left(\overrightarrow{OB}-\overrightarrow{OA}\right)=\overrightarrow{OM}.\overrightarrow{OB}-\overrightarrow{OM}.\overrightarrow{OA}\)
\(=\dfrac{3\sqrt{5}}{4}a.\dfrac{3}{2}a.\dfrac{2\sqrt{5}}{5}-\dfrac{3\sqrt{5}}{4}a.3a.\dfrac{\sqrt{5}}{4}=\dfrac{-9}{16}a^2\)
\(\Rightarrow\cos\widehat{\left(\overrightarrow{OM},\overrightarrow{AB}\right)=\dfrac{\overrightarrow{OM}.\overrightarrow{AB}}{OM.AB}=-\dfrac{1}{10}}\)
\(\Rightarrow cos\left(OM,AB\right)=\dfrac{1}{10}\)
Hicc, ở phần tính cos BOM mình bấm máy nhầm, bạn tự bấm lại nhé. :((((
Còn cả đoạn thay cos AOM và cos BOM vào tích vô hướng cũng bị lộn giữa 2 góc á.
Kết quả ra là 3/5 nhé!
Tự dưng giờ xem lại mới nhận ra lỗi sai nghiêm trọng này. Xin lỗi bạn nhé!
Gọi N là trung điểm của AC ⇒ M N / / A B , Vậy
( OM,AB ) = ( OM,MN ) = OMN
Cho OA = OB = OC = 1. Ta có.
M N = A B 2 = 2 2 O M = B C 2 = 2 2 O N = A C 2 = 2 2
Vậy ∆ O M N là tam giác đều và O M N = 60 o
Đáp án cần chọn là C
Đáp án C
Cách 1.
Gọi N là trung điểm của AC ⇒ M N / / A B
Cho OA =OB =OC =1. Ta có.
Vậy ∆ O M N là tam giác đều và O M N = 60 o
Cách 2. Dùng pp tọa độ hóa và công thức
Đặt O A = O B = O C = a suy ra
Gọi N là trung điểm AC, ta có MN//AB. Khi đó
Trong tam giác OMN có nên OMN là tam giác đều
Chọn C.
Đặt \(OA=OB=2OC=2a\)
\(\Rightarrow BC=\sqrt{OB^2+OC^2}=a\sqrt{5}\) \(\Rightarrow OM=\dfrac{1}{2}BC=\dfrac{a\sqrt{5}}{2}\)
Qua B kẻ đường thẳng song song OM cắt OC kéo dài tại D
\(\Rightarrow OM\) là đường trung bình tam giác BCD \(\Rightarrow BD=2OM=a\sqrt{5}\)
\(OM||BD\Rightarrow\left(OM;AB\right)=\left(BD;AB\right)=\widehat{ABD}\)
\(AB=\sqrt{OA^2+OB^2}=2a\sqrt{2}\)
\(AD=\sqrt{OA^2+OD^2}=\sqrt{OA^2+OC^2}=a\sqrt{5}\)
\(\Rightarrow cos\widehat{ABD}=\dfrac{AB^2+BD^2-AD^2}{2AB.BD}=\dfrac{\sqrt{10}}{5}\)