a= 1/12 + 1/22 +1/32 +1/42 ...+1/502
CHỨNG TỎ A < 2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có 1/2.2<1/1.2
1/3.3<1/2.3
1/4.4<1/3.4
.........................
1/20.20<1/19.20
=>1/2.2+1/3.3+1/4.4+...+1/20.20<1/1.2+1/2.3+1/3.4+...+1/19.20
=>A<1/1-1/2+1/2-1/3+1/3-1/4+...+1/19-1/20
=>A<1/1-1/20
=>A<20/20-1/20
=>A<19/20<20/20=1
=>A<1
Vậy A<1
a) P = 1 + 3 + 3² + ... + 3¹⁰¹
= (1 + 3 + 3²) + (3³ + 3⁴ + 3⁵) + ... + (3⁹⁹ + 3¹⁰⁰ + 3¹⁰¹)
= 13 + 3³.(1 + 3 + 3²) + ... + 3⁹⁹.(1 + 3 + 3²)
= 13 + 3³.13 + ... + 3⁹⁹.13
= 13.(1 + 3³ + ... + 3⁹⁹) ⋮ 13
Vậy P ⋮ 13
b) B = 1 + 2² + 2⁴ + ... + 2²⁰²⁰
= (1 + 2² + 2⁴) + (2⁶ + 2⁸ + 2¹⁰) + ... + (2²⁰¹⁶ + 2²⁰¹⁸ + 2²⁰²⁰)
= 21 + 2⁶.(1 + 2² + 2⁴) + ... + 2²⁰¹⁶.(1 + 2² + 2⁴)
= 21 + 2⁶.21 + ... + 2²⁰¹⁶.21
= 21.(1 + 2⁶ + ... + 2²⁰¹⁶) ⋮ 21
Vậy B ⋮ 21
c) A = 2 + 2² + 2³ + ... + 2²⁰
= (2 + 2² + 2³ + 2⁴) + (2⁵ + 2⁶ + 2⁷ + 2⁸) + ... + (2¹⁷ + 2¹⁸ + 2¹⁹ + 2²⁰)
= 30 + 2⁴.(2 + 2² + 2³ + 2⁴) + ... + 2¹⁶.(2 + 2² + 2³ + 2⁴)
= 30 + 2⁴.30 + ... + 2¹⁶.30
= 30.(1 + 2⁴ + ... + 2¹⁶)
= 5.6.(1 + 2⁴ + ... + 2¹⁶) ⋮ 5
Vậy A ⋮ 5
d) A = 1 + 4 + 4² + ... + 4⁹⁸
= (1 + 4 + 4²) + (4³ + 4⁴ + 4⁵) + ... + (4⁹⁷ + 4⁹⁸ + 4⁹⁹)
= 21 + 4³.(1 + 4 + 4²) + ... + 4⁹⁷.(1 + 4 + 4²)
= 21 + 4³.21 + ... + 4⁹⁷.21
= 21.(1 + 4³ + ... + 4⁹⁷) ⋮ 21
Vậy A ⋮ 21
e) A = 11⁹ + 11⁸ + 11⁷ + ... + 11 + 1
= (11⁹ + 11⁸ + 11⁷ + 11⁶ + 11⁵) + (11⁴ + 11³ + 11² + 11 + 1)
= 11⁵.(11⁴ + 11³ + 11² + 11 + 1) + 16105
= 11⁵.16105 + 16105
= 16105.(11⁵ + 1)
= 5.3221.(11⁵ + 1) ⋮ 5
Vậy A ⋮ 5
Ta thấy \(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)
\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)
......
\(\dfrac{1}{10^2}< \dfrac{1}{9.10}\)
hay \(D=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+....+\dfrac{1}{10^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
\(D< 1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+....+\dfrac{1}{9}-\dfrac{1}{10}\)
\(D< 1-\dfrac{1}{10}=\dfrac{9}{10}< 1\) ( đpcm )
Ta có \(\dfrac{1}{2.2}\) < \(\dfrac{1}{1.2}\)
\(\dfrac{1}{3.3}\)<\(\dfrac{1}{2.3}\)
\(\dfrac{1}{4.4}\)<\(\dfrac{1}{3.4}\)
.........................
\(\dfrac{1}{10.10}\)<\(\dfrac{1}{9.10}\)
=>\(\dfrac{1}{2.2}+\dfrac{1}{3.3}+\dfrac{1}{4.4}+...+\dfrac{1}{10.10}\)\(< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)
=> D < 1 - \(\dfrac{1}{10}\)
=>D < \(\dfrac{9}{10}\)
=> D < \(\dfrac{10}{10}\)
Vậy D < 1
https://olm.vn/cau-hoi/a-cho-a12211216211002-ctr-a12-b-cho-p122132142120232-ctr-p-khong-la-so-tu-nhien-c-cho-c132152172120211.8293222842881
Cô làm rồi em nhá
Câu a, xem lại đề bài
Câu b:
P = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + ...+ \(\dfrac{1}{2023^2}\)
Vì \(\dfrac{1}{2^2}\) < \(\dfrac{1}{1.2}\) = \(\dfrac{1}{1}\) - \(\dfrac{1}{2}\)
\(\dfrac{1}{3^2}\) < \(\dfrac{1}{2.3}\) = \(\dfrac{1}{2}\) - \(\dfrac{1}{3}\)
\(\dfrac{1}{4^2}\) < \(\dfrac{1}{3.4}\) = \(\dfrac{1}{3}\) - \(\dfrac{1}{4}\)
........................
\(\dfrac{1}{2023^2}\) < \(\dfrac{1}{2022.2023}\) = \(\dfrac{1}{2022}\) - \(\dfrac{1}{2023}\)
Cộng vế với vế ta có:
0< P < 1 - \(\dfrac{1}{2023}\) < 1
Vậy 0 < P < 1 nên P không phải là số tự nhiên vì không tồn tại số tự nhiên giữa hai số tự nhiên liên tiếp
Câu c:
C = \(\dfrac{1}{3^2}\) + \(\dfrac{1}{5^2}\) + \(\dfrac{1}{7^2}\) + ....+ \(\dfrac{1}{2021^2}\) + \(\dfrac{1}{2023^2}\) = C
B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{6^2}\)+.......+ \(\dfrac{1}{2020^2}\) + \(\dfrac{1}{2023^2}\) > 0
Cộng vế với vế ta có:
C+B = \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\) + \(\dfrac{1}{4^2}\) + \(\dfrac{1}{5^2}\)+ \(\dfrac{1}{6^2}\)+...+ \(\dfrac{1}{2023^2}\) > C + 0 = C > 0
Mặt khác ta có:
1 > \(\dfrac{1}{2^2}\) + \(\dfrac{1}{3^2}\)+...+ \(\dfrac{1}{2023^2}\) (cm ở ý b)
Vậy 1 > C > 0 hay C không phải là số tự nhiên (đpcm)
* Ta có : 1/21 >1/30 ;1/22 >1/30 ;...;1/29 >1/30
=> 1/21 +1/22 +...+1/29 +1/30 >1/30 +1/30 +...+1/30 =10/30 =1/3 (1)
1/31 >1/40 ;1/32 >1/40 ;...;1/39 >1/40
=> 1/31 +1/32 +...+1/39 +1/30 >1/40 +1/40 +...+1/40 =10/40 =1/4 (2)
Từ (1) và (2)
=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 >1/3 +1/4
=> 1/21 +1/22 +1/23 +...+1/40 >7/12 (*)
* Ta có : 1/21 <1/20 ;1/22 <1/20 ;...;1/30 <1/20
=> 1/21 +1/22 +...+1/29 +1/30 <1/20 +1/20 +...+1/20 =10/20 =1/2 (3)
1/31 <1/30 ;1/32 <1/30 ;...;1/40 <1/30
=> 1/31 +1/32 +...+1/39 +1/40 <1/30 +1/30 +...+1/30 =10/30 =1/3 (4)
Từ (3) và (4)
=> 1/21 +1/22 +...+1/30 +1/31 +1/32 +...+1/40 <1/2 +1/3
=> 1/21 +1/22 +1/23+...+1/40 <5/6 (**)
Từ (*) và (**) ta có : 7/12 <1/21 +1/22 +1/23 +...+1/40 <5/6 (đpcm)
Bài hơi dài , thông cảm
Ta có : \(\frac{1}{21}>\frac{1}{30};\frac{1}{22}>\frac{1}{30};\frac{1}{23}>\frac{1}{30};...;\frac{1}{29}>\frac{1}{30}\)
\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{29}>\frac{1}{30}+\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\)
\(>\frac{10}{30}=\frac{1}{3}(1)\)
Ta có : \(\frac{1}{31}>\frac{1}{40},\frac{1}{32}>\frac{1}{40},...,\frac{1}{39}>\frac{1}{40}\)
\(\Rightarrow A=\frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{39}>\frac{1}{40}+\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\)
\(>\frac{10}{40}=\frac{1}{4}(2)\)
Từ 1 và 2 \(\Rightarrow A>\frac{1}{3}+\frac{1}{4}\Rightarrow A>\frac{7}{12}\)
Ta có : \(\frac{1}{21}< \frac{1}{20};\frac{1}{22}< \frac{1}{20};...;\frac{1}{30}< \frac{1}{20}\)
\(\Rightarrow A=\frac{1}{21}+\frac{1}{22}+\frac{1}{23}+...+\frac{1}{30}< \frac{1}{20}+\frac{1}{20}+...+\frac{1}{20}\)
\(< \frac{10}{20}=\frac{1}{2}(3)\)
Ta lại có : ....
Làm tiếp đi :v
Ta có :
1/2^ 2<1/1.2
1/3 ^2<1/2.3
1/4^ 2<1/3.4
.........................
1/50^ 2<1/49.50
=>A<1/1 2+1/1.2+1/2.3+..+1/49.50
A<1+1-1/2+1/2=1/3+...+1/49-1/50 A<2-1/50<2(đpcm)
Ta có 1/22<1/1.2
1/32<1/2.3
1/42<1/3.4
.........................
1/502<1/49.50
=>A<1/12+1/1.2+1/2.3+..+1/49.50
A<1+1-1/2+1/2=1/3+...+1/49-1/50
A<2-1/50<2(đpcm)