K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: \(BC=\sqrt{AB^2+AC^2}=5\left(cm\right)\)

2: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)

3: \(BC=\sqrt{12^2+16^2}=20\left(cm\right)\)

3:

góc C=90-50=40 độ

Xét ΔABC vuông tại A có sin C=AB/BC

=>4/BC=sin40

=>\(BC\simeq6,22\left(cm\right)\)

\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)

1:

góc C=90-60=30 độ

Xét ΔABC vuông tại A có

sin B=AC/BC

=>3/BC=sin60

=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)

=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)

17 tháng 8 2023

còn câu 2 

 

21 tháng 12 2021

a: BC=5cm

AH=2,4cm

BH=1,8cm

CH=3,2cm

a: BC=căn 3^2+4^2=5cm

HB=AB^2/BC=1,8cm

HC=5-1,8=3,2cm

AH=3*4/5=2,4cm

b: 

1: ΔAHB vuông tại H có HE là đường cao

nên AE*EB=EH^2

2: ΔHAC vuông tại H có HF là đường cao

nên AF*FC=HF^2

=>AE*EB+AF*FC=HE^2+HF^2=EF^2=AH^2

4 tháng 8 2016
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
4 tháng 8 2016

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

23 tháng 1 2017

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

23 tháng 1 2017

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

23 tháng 12 2022

Áp dụng ddL pytago vào Δ abc( góc a =90 )

BC=AB+AC2

⇒BC2=16+9=25

⇒BC=5

Xét Δabc vông tại a có:

AH=\(\dfrac{1}{2}\) BC=\(\dfrac{5}{2}\) =2.5 (CM)

Vậy AH=2.5cm

 

24 tháng 10 2021

1: Xét ΔABC vuông tại A có 

\(BC^2=AB^2+AC^2\)

hay BC=5(cm)

Xét ΔABC vuông tại A có AH là đường cao

nên \(AH\cdot BC=AB\cdot AC\)

hay AH=2,4(cm)

2 tháng 5 2022

a. áp dụng định lý pytago vào tam giác vuông ABC, ta có:

BC2=AB2+AC2

BC2= 32+42

BC2= 9+16

BC2=25

BC= 5 (cm)

Vì BD là phân giác 

=> \(\dfrac{AD}{CD}\)=\(\dfrac{AB}{BC}\)

gọi AD là x, CD là 4-x

=> \(\dfrac{x}{4-x}\)=\(\dfrac{3}{5}\)

5x= 3.(4-x)

5x= 12-3x

5x+3x=12

8x=12

x= 1,5 (cm)

Vậy AD= 1,5 cm

b. Xét tam giác ABC và tam giác HBA:

góc A= góc H= 90o

góc B chung

=> tam giác ABC ~ tam giác HBA

c. Vì tam giác ABC ~ tam giác HBA (cmt)

=> \(\dfrac{AB}{HB}\)=\(\dfrac{BC}{AB}\)

=> AB2=BC.HB

a) Xét ΔNAM vuông tại M và ΔNBM vuông tại M có 

NM chung

MA=MB(M là trung điểm của AB)

Do đó: ΔNAM=ΔNBM(hai cạnh góc vuông)

Suy ra: NA=NB(Hai cạnh tương ứng)

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=3^2+4^2=25\)

hay BC=5(cm)

Vậy: BC=5cm