B=1+2+2^2+2^3+...+2^2008 / 1-2^2009
Giúp mình nha!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(C=1+2+2^2+...+2^{2007}+2^{2008}\)
\(\Rightarrow2C=2+2^2+2^3+...+2^{2008}+2^{2009}\)
\(\Rightarrow2C-C=2^{2009}-1\)
\(\Rightarrow C=2^{2009}-1\)
\(\Rightarrow B=\dfrac{2^{2009}-1}{1-2^{2009}}=\dfrac{-1\left(1-2^{2009}\right)}{1-2^{2009}}=-1\)
Giải:
B=1+2+22+23+...+22008/1-22009
Ta gọi phần tử là A, ta có:
A=1+2+22+23+...+22008
2A=2+22+23+24+...+22009
2A-A=(2+22+23+24+...+22009)-(1+2+22+23+...+22008)
A=22009-1
Vậy B=22009-1/1-22009
Chúc bạn học tốt!
đặt tổng trên là A
=>2A=2+2^2+2^3+...+2^1008
=>2A-A=2^1008-1
=>A=2^1008-1
ko có đáp án nào ở trên
\(\frac{2009}{1}+\frac{2010}{2}+...+\frac{5016}{2008-2008}\)
\(=\frac{2009}{1}+\frac{2010}{2}+...+\frac{5016}{0}\)
Sau đó QĐM(bạn tự QĐ nha)
\(=\frac{0}{0}+\frac{0}{0}+...+\frac{5016}{0}\)
\(=\frac{5016}{0}=0\)
\(\Rightarrow\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right).x=0\)
Mà \(\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2008}\right)\ne0\)
\(\Rightarrow x=0\)
\(\Leftrightarrow x+x+...+x+1+2+3+...+2008=2008.2009\)
\(\Leftrightarrow x.2008+\frac{\left(1+2008\right).2008}{2}=2008.2009\)
\(\Leftrightarrow x.2008=2008.2009-\frac{2008.2009}{2}\)
\(\Leftrightarrow x.2008=\frac{2008.2009}{2}\)
\(x=\frac{2009}{2}\)
Đặt A = 1 + 2 + 2^2+ 2^3 + ...+ 2^2008
Suy ra 2A= (1 + 2 + 2^2+ 2^3 + ...+ 2^2008) x 2
= 2 + 2^2+2^3+2^4+...+2^2009
Vì A = 2A-A nên ta có biểu thức sau:
A =( 2 + 2^2+2^3+2^4+...+2^2009)- (1 + 2 + 2^2+ 2^3 + ...+ 2^2008)
= 2^2009 - 1
Do vậy B = A/ 1-2^2009
Thay A vào biểu thức trên ta có :
B= (2^2009- 1 )/ 1-2^2009= - (1-2^2009)/ (1-2^2009)= -1
Vậy B= -1
chắc 1000000000% đó bn ạ