Cho x>y>0. Chứng minh: \(\frac{x-y}{x+y}<\frac{x^2-y^2}{x^2+y^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2) Ta có:
\(\frac{1}{xy}+\frac{2}{x^2+y^2}=2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\)
Áp dụng BĐT Schwarz:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}=\frac{4}{\left(x+y\right)^2}\)
Mà x+y=1 nên suy ra:
\(\frac{1}{2xy}+\frac{1}{x^2+y^2}\ge4\)
\(\Rightarrow2\left(\frac{1}{2xy}+\frac{1}{x^2+y^2}\right)\ge8\)
=>đpcm.
Dấu ''='' xảy ra khi x=y=1/2
\(\left(x+y\right)^2=x^2+y^2+2xy>x^2+y^2\)
\(\frac{1}{\left(x+y\right)^2}<\frac{1}{x^2+y^2}\)
\(\frac{x-y}{\left(x+y\right)^2}<\frac{x-y}{x^2+y^2};vì:x-y>0\)nhân 2 vế với x+y
\(\frac{x-y}{x+y}<\frac{\left(x-y\right)\left(x+y\right)}{x^2+y^2};vì:x+y>0\)
Do x>y>0 nên x+y\(\ne0\)
Ta có \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\) (1)
Mặt khác ,do x,y>0 nên \(x^2+2xy+y^2>x^2+y^2\)
Vậy: \(\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+y^2}\) (2)
Từ (1),(2) ta suy ra : \(\frac{x-y}{x+y}< \frac{x^2-y^2}{x^2+y^2}\)
đặt A=x/x+y+z +y/y+z+t +z/z+t+x +t/t+x+y
ta có x/x+y+z>x/x+y+z+t
y/y+z+t>y/x+y+z+t
z/z+t+x>z/z+t+x+y
t/t+x+y>t/x+t+y+z
=>A>x/x+y+t+z +t/x+y+t+z +z/x+y+t+z +y/x+t+y+z=x+y+z+t/x+y+z+t=1>3/4 (1)
*)y/y+z+t<y+x/y+z+t+x
x/x+y+z<x+t/x+y+z+t
z/z+t+x<z+y/x+y+z+t
t/t+x+y<t+z/t+x+y+z
=>A<y+x/x+y+z+t +x+t/x+y+z+t +z+y/x+y+z+t +t+z/x+y+z+t
=y+x+x+t+z+y+t+z/x+y+z+t=2(x+y+z+t)/x+y+z+t=2<5/2 (2)
từ (1) và (2) =>3/4<A<5/2
=>
Ta có:
\(\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<\frac{x+t}{x+y+z+t}+\frac{x+y}{x+y+z+t}+\frac{y+z}{x+y+z+t}+\frac{z+t}{x+y+z+t}\)
\(\Rightarrow1<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<2\)
\(\Rightarrow\frac{3}{4}<\frac{x}{x+y+z}+\frac{y}{y+z+t}+\frac{z}{z+t+x}+\frac{t}{t+x+y}<\frac{5}{2}\)
Ta có \(\frac{x-y}{x+y}=\frac{x-y}{x+y}\times1=\frac{x-y}{x+y}\times\frac{x+y}{x+y}\)
\(=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)\left(x+y\right)}=\frac{x^2-y^2}{x^2+2xy+y^2}\)
Vì x>y>0 \(\Rightarrow x^2+2xy+y^2>x^2+y^2\)
\(\Rightarrow\frac{x^2-y^2}{x^2+2xy+y^2}<\frac{x^2-y^2}{x^2+y^2}\)
\(\Rightarrow\frac{x-y}{x+y}<\frac{x^2-y^2}{x^2+y^2}\)