Cho tam giacABC nhon .duong cao AH .ve .HD vuong goc voi AC tai D .a cm :tam giac AHD dong dang voi tam giac ACH .b ve HE vong goc voi AB tai E .cm : goc ADE bang goc AHD .minh can nop bai gap .
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Xét \(\Delta BHE\) và \(\Delta CHF\) có:
\(\widehat{B}=\widehat{C}\left(gt\right)\)
\(\widehat{E}=\widehat{F}=90^o\left(gt\right)\)
\(HB=HC\)( trong tam giác cân, đường cao cũng là đường trung tuyến)
\(\Rightarrow\Delta BHE=\Delta CHF\left(g.c.g\right)\)
\(\RightarrowĐpcm\)
a: Xet ΔAHB vuôg tại H và ΔCAB vuông tại A có
góc B chung
=>ΔAHB đồng dạng với ΔCAB
b: Xét ΔAHB vuông tại H có HE là đường cao
nen AE*AB=AH^2
Xét ΔAHC vuông tạiH có HF là đường cao
nên AF*AC=AH^2
=>AE*AB=AF*AC
c: góc MEB=góc AEF=góc AHF=góc MCF
Xét ΔMEB và ΔMCF có
góc MEB=góc MCF
góc M chung
=>ΔMEB đồng dạng với ΔMCF
=>ME/MC=MB/MF
=>ME/MB=MC/MF
=>ΔMEC đồng dạng với ΔMBF
=>góc MCE=góc MFB
a: Xét ΔABH và ΔACH có
AB=AC
góc BAH=góc CAH
AH chung
Do đó: ΔABH=ΔACH
b: ΔBAC cân tại A
mà AH là phân giác
nên AH vuông góc với BC
c: Xét ΔADH vuông tại D và ΔAEH vuông tại E có
AH chung
góc DAH=góc EAH
Do đó: ΔADH=ΔAEH
=>AD=AE
Xét ΔABC có AD/AB=AE/AC
nên DE//BC
a) Tự vẽ
b) Vì CI là phân giác ACB
=> ACI = BCI = \(\frac{60°}{2}\)= 30°
Vì IE // BC (gt)
=> ICB = EIC = 30° ( so le trong)
d) Vì DE//BC (gt)
=> AED = ACB = 60° ( đồng vị)
Xét ∆AIE ta có :
AIE + AEI + IAE = 180°
=> IAK = 180° - 90° - 60° = 30°
Ta có :
AEI = KEC = 60° ( đối đỉnh)
Xét ∆EKC ta có :
EKC + KCE + KEC = 180°
=> KCE = 180° - 90° - 60° = 30°
=> EAI = KCE = 30°
Mà 2 góc này ở vị trí so le trong
=> AH//KC
e) Xét ∆AHC ta có :
ACH + CAH + AHC = 180°
=> CAH = 180° - 90° - 60° = 30°
pham vu anh tuan oi ban co the ve hinh va viet gia thiet cho mik dc ko .lm on!!!
Vì trong 1 tam giác cân, đường cao đồng thời là đường trung tuyến, vừa là đường phân giác của tam giác đó.
\(\Rightarrow\) \(\widehat{EAO}\)\(=\widehat{FAO}\)
Xét \(\Delta EAO\) và \(\Delta FAO\) có:
AO là cạnh chung
\(\widehat{AOE}\)\(=\widehat{AO}F\) ( vì AH\(\perp BC\)\(\Rightarrow\) AH\(\perp\)EF)
\(\widehat{EAO}\)\(=\widehat{FAO}\) (cmt)
\(\Rightarrow\Delta EAO=\Delta FAO\left(g.c.g\right)\)
\(\Rightarrow AE=\) AF( cặp cạnh tương ứng)
Vì \(\widehat{AOE}=\widehat{OHB}\) \(=90\)độ
Mà 2 góc này ở vị trí đồng vị nên EF// BC (1)
Vì \(\Delta ABC\) cân tại A=> \(\widehat{B}\) = \(\widehat{C}\) (2)
Từ (1) và (2)=> BEFC là hình thang cân.
a: Xét ΔBEM vuông tại E và ΔCFM vuông tại F có
MB=MC
\(\widehat{MBE}=\widehat{MCF}\)
Do đó:ΔBEM=ΔCFM
b: Ta có: AE+EB=AB
AF+FC=AC
mà EB=FC
và AB=AC
nên AE=AF
mà ME=MF
nên AM là đường trung trực của EF
c: Ta có: ΔABC cân tại A
mà AM là đường trung tuyến
nên AM là đường trung trực của BC(1)
Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
AB=AC
Do đó: ΔABD=ΔACD
Suy ra: DB=DC
hay D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra A,M,D thẳng hàng