Tính:
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2009}\right)\)
Ai trả lời nhanh nhất và chính xác nhất thì mình tick cho nhé!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(1-1/2)(1-1/3)(1-1/4)...(1-1/2009)
=1/2*2/3*3/4*...*2008/2009
=\(\frac{1\cdot2\cdot3\cdot...\cdot2008}{2\cdot3\cdot4\cdot...\cdot2009}\)
=1/2009
=> 1/2.2/3.3/4...x/(x+1)=1/2009
=> 1/(x+1)=1/2009
=> x+1=2009
=> x=2008
Mik nhanh nhất mik nha
=> 1/2 . 2/3 . 3/4 .... x/x+1 = 1/2009
<=> (1.2.3...x) / [2.3...x.(x+1)] = 1/2009
<=> 1/ (x+1) = 1/2009
=> x+1=2009 => x=2008
=(-1/2) : (-2/3) :( -3/4) :...: (-49/50)
= -1/2 . (-3/2) . (-4/3) . ... . (-50/49)
= -1/2.(-1/2) . (-50)
= - 1/100
tôi chỉ bn nè muốn làm thì hẳng hok thuộc đề bài vừa hok thuộc vùa nghĩ về bài sẽ nhưng thế nào
\(\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)\left(1-\frac{1}{4}\right)....\left(1-\frac{1}{2009}\right)\)
=\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}...\frac{2008}{2009}\)
=\(\frac{1}{2009}\)