Tìm số nhỏ nhất khi chia cho 2,3,4,5,6 thì có các số dư tương ứng là 2,3,3,4,5 và khi chia cho 7 thì không còn dư
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta gọi số đó là a (a thuộc N)theo đề bài ta có a chia cho 2;3;4;5;6; đều dư 1 (1).Vậy a-1 chia hết cho 2;3;4;5;6 mà đề bài bảo rằng số đó là số nhỏ nhất (2).Từ (1) và (2) ta suy ra a-1 là BCNN(2;3;4;5;6) mà BCNN(2;3;4;5;6) là 60 . Ta thấy đề bài nói số đố phải chia hết cho 7 nên a-1 chia hết cho 7. Ta lấy 60.7=420. Vậy a=420+1=421.Vậy số ta cần tìm là 421 (Chúc bạn học tốt nhé)
a) Gọi số cần tìm là a (a\(\in N\)*)
Có: a - 1 \(⋮3\)
a - 1 \(⋮4\)
a - 1 \(⋮5\)
=> a - 1 \(\in BCNN\left(3;4;5\right)\)
=> a - 1 = 3x4x5 = 60
=> a = 61
Vậy số cần tìm là 61
b) Dạng chung của các số có tính chất trên là 60k + 1 (\(k\in N\)*)