K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 4 2016

S=(1/1.3+1/3.5+.....+1/7.9) + (1/2.4+1/4.6+....+1/8.10)

2S=1/2.(1-1/9+(1/2-1/10))

2S=1/2.(8/9 + 2/5)

2S=1/2.58/45

2S=29/45

S=29/45:2

S=29/90

26 tháng 4 2016

S=(1/1.3+1/3.5+.....+1/7.9) + (1/2.4+1/4.6+....+1/8.10)

2S=1/2.(1-1/9+(1/2-1/10))

2S=1/2.(8/9 + 2/5)

2S=1/2.58/45

2S=29/45

S=29/45:2

S=29/90

10 tháng 8 2015

S= 1/1.3+ 1/2.4+1/3.5+....+!/7.9+1/8.10
=1/2(1-1/3 +1/2-1/4 +1/3-1/5 +...+ 1/7-1/9 + 1/8-1/10)
=1/2(1+1/2-1/9-1/10)
=....

10 tháng 8 2015

\(S=\frac{1}{1.3}+.....+\frac{1}{8.10}\)

\(2S=\frac{2}{1.3}+....+\frac{2}{8.10}\)

\(2S=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+....+\frac{1}{8}-\frac{1}{10}\)

\(2S=1-\frac{1}{10}\)

\(2S=\frac{9}{10}\)

\(S=\frac{9}{10}:2\)

\(S=\frac{9}{20}\)

27 tháng 8 2015

Mik giải phía dưới rồi đó. Câu lúc nãy bạn đăng ý

27 tháng 8 2015

\(\left[\frac{12}{11}-\left(\frac{1}{2}+\frac{1}{44}\right)\right].\left(x-0,2\right)=\frac{1}{1.3}+\frac{1}{3.5}+\frac{1}{5.7}+\frac{1}{7.9}+\frac{1}{9.11}\)

\(\frac{25}{44}.\left(x-0,2\right)=\frac{1}{2}.\left(\frac{1}{1.3}+\frac{1}{3.5}+...+\frac{1}{9.11}\right)\)

\(x-0,2=\frac{1}{2}.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{9}-\frac{1}{11}\right):\frac{25}{44}\)

\(x-\frac{1}{5}=\frac{22}{25}.\left(1-\frac{1}{11}\right)=\frac{22}{25}.\frac{10}{11}=\frac{4}{5}\)

\(x=\frac{4}{5}+\frac{1}{5}\)

\(x=1\)

13 tháng 8 2020

\(S=\frac{1.3}{3.5}+\frac{2.4}{5.7}+\frac{3.5}{7.9}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}+...+\frac{1002.1004}{2005.2007}\)

\(\Rightarrow S=\frac{\left(2-1\right)\left(2+1\right)}{\left(2.2-1\right)\left(2.2+1\right)}+\frac{\left(3-1\right)\left(3+1\right)}{\left(3.2-1\right)\left(3.2+1\right)}+...+\frac{\left(n-1\right)\left(n+1\right)}{\left(2n-1\right)\left(2n+1\right)}\)

\(+..+\frac{\left(1003-1\right)\left(1003+1\right)}{\left(1003.2-1\right)\left(1003.2+1\right)}\)

\(\Rightarrow S=\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}\right)+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{3.2-1}-\frac{1}{3.2+1}\right)+...\)

\(+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{2n-1}-\frac{1}{2n+1}\right)+...+\frac{1}{4}-\frac{3}{8}\left(\frac{1}{1003.2-1}-\frac{1}{1003.2+1}\right)\)

\(\Rightarrow S=1002.\frac{1}{4}-1002.\frac{3}{8}\left(\frac{1}{2.2-1}-\frac{1}{2.2+1}+\frac{1}{3.2-1}-...-\frac{1}{1003.2+1}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+...+\frac{1}{2005}-\frac{1}{2007}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}\left(\frac{1}{3}-\frac{1}{2007}\right)\)

\(\Rightarrow S=\frac{501}{2}-\frac{1503}{4}.\frac{668}{2007}\)

\(\Rightarrow S=\frac{501}{2}-\frac{27889}{223}\)

\(\Rightarrow S=125,4372197\)

\(\)

4 tháng 4 2021

thx  you