\(\Delta DEF\) là tam giác đều cạnh a. Kẻ \(DH\perp EF\). Cạnh DH có độ dài là:
\(A.\dfrac{a}{2}\)
\(B.a\)
\(C.\dfrac{a\sqrt{3}}{2}\)
\(D.2a\)
Làm theo phương pháp tự luận, đầy đủ chi tiết
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BĐT trên bị ngược dấu rồi.
Theo công thức Heron:
\(S=\dfrac{1}{4}\sqrt{\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)}\).
Do đó ta chỉ cần cm:
\(\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\leq a^2b^2+b^2c^2+c^2a^2\). (1)
Ta có \(\left(1\right)\Leftrightarrow a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\ge0\Leftrightarrow\dfrac{\left(a^2-b^2\right)^2}{2}+\dfrac{\left(b^2-c^2\right)^2}{2}+\dfrac{\left(c^2-a^2\right)^2}{2}\ge0\) (luôn đúng).
Do đó bđt ban đầu cũng đúng.
Đẳng thức xảy ra khi tam giác đó đều.
a: Xét ΔDEA và ΔDFB có
DE=DF
góc D chung
DA=DB
=>ΔDEA=ΔDFB
b: ΔDEA=ΔDFB
=>góc DEA=góc DFB
=>góc KEF=góc KFE
=>ΔKEF cân tại K
c: ΔDEF cân tại D
mà DH là đường cao
nên DH là trung tuyến
=>DH,EA,FB đồng quy
Ta có:
\(\left(2a^2-b^2-c^2\right)^2\ge0\)
\(\Leftrightarrow4a^4+b^4+c^4-4a^2b^2-4a^2c^2+2b^2c^2\ge0\)
\(\Leftrightarrow a^4+b^4+c^4+2a^2b^2+2b^2c^2+2c^2a^2\ge6a^2b^2+6a^2c^2-3a^4\)
\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2\ge3a^2\left(2b^2+2c^2-a^2\right)\)
\(\Leftrightarrow\dfrac{1}{\sqrt{2b^2+2c^2-a^2}}\ge\dfrac{\sqrt{3}a}{a^2+b^2+c^2}\)
\(\Leftrightarrow\dfrac{a}{\sqrt{2b^2+2c^2-a^2}}\ge\sqrt{3}\dfrac{a^2}{a^2+b^2+c^2}\)
Tương tự: \(\dfrac{b}{\sqrt{2a^2+2c^2-b^2}}\ge\sqrt{3}.\dfrac{b^2}{a^2+b^2+c^2}\) ; \(\dfrac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\sqrt{3}.\dfrac{c^2}{a^2+b^2+c^2}\)
Cộng vế: \(P\ge\dfrac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)
\(P_{min}=\sqrt{3}\) khi \(a=b=c\)
a: góc MDH=90 độ-góc DMH
=90 độ-2*góc MDF
=90 độ-2*góc E
=góc F+góc E-2*góc E
=góc F-gócE
b: (EF+DH)^2-(DF+DE)^2
=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE
=DH^2>0
=>EF+DH>DF+DE
=>EF-DE>DF-DH
2/ (Bạn tự vẽ hình giùm)
a/ Ta có DE // BC (gt)
=> \(\widehat{ADE}=\widehat{ABC}\)ở vị trí đồng vị
và \(\widehat{AED}=\widehat{ACB}\)ở vị trí đồng vị
Mà \(\widehat{ABC}=\widehat{ACB}\)(\(\Delta ABC\)cân tại A)
=> \(\widehat{ADE}=\widehat{AED}\)
=> \(\Delta ADE\)cân tại A
b/ Ta có \(\widehat{AED}=\widehat{CEG}\)(đối đỉnh)
và \(\widehat{ADE}=\widehat{BDF}\)(đối đỉnh)
và \(\widehat{ADE}=\widehat{AED}\)(cm câu a)
=> \(\widehat{CEG}=\widehat{BDF}\)(1)
Ta lại có \(\widehat{ECG}=90^o-\widehat{CEG}\)(\(\Delta CEG\)vuông tại G)
và \(\widehat{DBF}=90^o-\widehat{DFB}\)(\(\Delta BDF\)vuông tại F)
=> \(\widehat{ECG}=\widehat{DBF}\)(vì \(\widehat{CEG}=\widehat{BDF}\)) (2)
Ta tiếp tục có AB = AC (\(\Delta ABC\)cân tại A)
và AD = AE (\(\Delta ADE\)cân tại A)
=> AB - AD = AC - AE
=> DB = EC (3)
Từ (1), (2) và (3) => \(\Delta BFD=\Delta CGE\)(g. c. g) (đpcm)
c/ Ta có \(\widehat{ADE}=\widehat{AED}\)(cm câu a)
=> \(180^o-\widehat{ADE}=180^o-\widehat{AED}\)
=> \(\widehat{ADF}=\widehat{AEG}\)
và AD = AE (\(\Delta ADE\)cân tại A)
và DF = GE (\(\Delta BFD=\Delta CGE\))
=> \(\Delta ADF=\Delta AEG\)(c. g. c)
=> AF = AG (hai cạnh tương ứng) (đpcm)
d/ Ta có O là giao điểm của hai đường cao EI và DH của \(\Delta AGF\)
=> O là trực tâm của \(\Delta AGF\)
=> AO là đường cao thứ ba của \(\Delta AGF\)
=> AO \(\perp\)GF
Mà GF // BC
=> AO \(\perp\)BC
=> AO là đường cao của \(\Delta ABC\)
Mà \(\Delta ABC\)cân tại A
=> AO là đường phân giác của \(\Delta ABC\)
hay AO là tia phân giác của \(\widehat{BAC}\)(đpcm)
e/ Ta có DE \(\equiv\)BC
và AO \(\perp\)BC
=> AO \(\perp\)DE (đpcm)
phần \(AC\perp OG\)mình đang giải.
Ta có tam giác DEF đều
Mà DH là đường cao
=> DH cũng là đường trung tuyến
=>H là trug điểm EF
=>EH=\(\dfrac{EF}{2}=\dfrac{a}{2}\)
Xét tam giác DHE vuông tại H có:
\(DH^2+EH^2=DE^2\)
hay \(DH^2+\left(\dfrac{a}{2}\right)^2=a^2\)
=>\(DH^2=a^2-\dfrac{a^2}{4}\)
\(=\dfrac{4a^2-a^2}{4}=\dfrac{3a^2}{4}\)
=>DH=\(\dfrac{a\sqrt{3}}{2}\)
=>Chọn C
bạn ơi nhưng mk chưa học đường trung tuyến ạ