1 mảnh đất HCN có S=240m vuông.Nếu tăng rộng 3m và giảm dài 4m thì diện tích ko đổi. Tính chu vi?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn vào đây tham khảo nè
Câu hỏi của Võ Đông Anh Tuấn - Toán lớp 9 - Học toán với OnlineMath
Gọi chiều dài, chiều rộng của mảnh vườn lần lượt là a(m),b(m)(ĐK: a>0; b>0)
Nửa chu vi mảnh vườn là: 100/2=50(m)
Do đó, ta có: a+b=50
Tăng chiều rộng thêm 3m và giảm chiều dài đi 4m thì diện tích giảm 2m2 nên ta có:
(a-4)(b+3)=ab-2
=>ab+3a-4b-12=ab-2
=>3a-4b=10
Do đó, ta có hệ:
\(\left\{{}\begin{matrix}a+b=50\\3a-4b=10\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a+3b=150\\3a-4b=10\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}7b=140\\a+b=50\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b=20\\a=30\end{matrix}\right.\)
Diện tích mảnh vườn là: \(20\cdot30=600\left(m^2\right)\)
Nửa chu vi hcn là: `100:2=50(m)`
Gọi chiều dài là `x (m)`
chiều rộng là `y (m)`
ĐK: `0 < y < x < 50`
Theo bài ra ta có hệ phương trình:
`{(x+y=50),(xy-2=(x-4)(y+3)):}`
`<=>{(x+y=50),(xy-2=xy+3x-4y-12):}`
`<=>{(x+y=50),(3x-4y=10):}`
`<=>{(x=30),(y=20):}`
Vậy diện tích mảnh vườn là: `30.20=600 m^2`.
Nửa chu vi mảnh đất là 100:2=50(m)
Gọi chiều dài ban đầu của mảnh đất là x(m)
(Điều kiện: 0<x<50)
Chiều rộng ban đầu của mảnh đất là 50-x(m)
Chiều dài lúc sau của mảnh đất là x+5(m)
Chiều rộng lúc sau của mảnh đất là 50-x-4=46-x(m)
Diện tích mảnh vườn giảm đi 40m2 nên ta có phương trình:
x(50-x)-(x+5)(46-x)=40
=>\(50x-x^2-46x+x^2-230+5x=40\)
=>9x=270
=>x=30(nhận)
Vậy: Chiều dài ban đầu là 30m
Chiều rộng ban đầu là 50-30=20m
Gọi chiều dài là x
=>Chiều rộng là 50-x
Theo đề, ta có:(x+5)(50-x-4)=x(50-x)-40
=>(x+5)(46-x)=x(50-x)-40
=>46x-x^2+230-5x=50x-x^2-40
=>41x+230=50x-40
=>-9x=-270
=>x=30
=>Chiều rộng là 20m
Gọi \(x,y\left(m\right)\) là chiều dài và chiều rộng mảnh đất \(\left(x,y>0\right)\)
Theo đề bài, ta có hệ pt :
\(\left\{{}\begin{matrix}\left(x+y\right).2=100\\\left(x+5\right)\left(y-4\right)=xy-40\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\xy-4x+5y-20-xy+40=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=50\\-4x+5y=-20\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=30\left(n\right)\\y=20\left(n\right)\end{matrix}\right.\)
Vậy chiều dài ban đầu là 30m, chiều rộng ban đầu là 20m