K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 2 2022

Bạn vẽ hình giúp mình nha!

a. Ta có: \(\left\{{}\begin{matrix}BC\perp AB\left(ABCD.là.hình.vuông\right)\\BC\perp SA\left(SA\perp\left(ABCD\right)\right)\end{matrix}\right.\) \(\Rightarrow BC\perp\left(SAB\right)\Rightarrow BC\perp AH\)

Có: \(\left\{{}\begin{matrix}BC\perp AH\left(cmt\right)\\AH\perp SB\left(gt\right)\end{matrix}\right.\) \(\Rightarrow AH\perp\left(SBC\right)\Rightarrow AH\perp SC\) (đpcm)

Chứng minh tương tự với AK, ta cũng có: \(AK\perp\left(SCD\right)\Rightarrow AK\perp SC\)

Có: \(\left\{{}\begin{matrix}AH\perp SC\\AK\perp SC\\AI\perp SC\end{matrix}\right.\) \(\Rightarrow\)SC vuông góc với mặt phẳng chứa A,H,I,K

Hay A,H,I,K cùng nằm trong một mặt phẳng

b. Có: \(SC\perp\left(HIK\right)\Rightarrow SC\perp HK\)

Xét \(\Delta SAB\) vuông tại A và \(\Delta SAD\) vuông tại A có: \(\left\{{}\begin{matrix}SA.là.cạnh.chung\\AB=AD\left(ABCD.là.hình.vuông\right)\end{matrix}\right.\) 

\(\Rightarrow\)\(\Delta SAB\) = \(\Delta SAD\) \(\Rightarrow AH=AK\Rightarrow\dfrac{SH}{SB}=\dfrac{SK}{SD}\)

Áp dụng định lí Ta-let đảo ta có: HK//BD

Xét \(\Delta SBD\) có: SB=SD \(\Rightarrow\)\(\Delta SBD\) cân tại S

\(\Rightarrow\) SO vừa là đường trung tuyến vừa là đường cao 

\(\Rightarrow\) \(SO\perp BD\)

Mà BD//HK

\(\Rightarrow\)\(SO\perp HK\)

Ta có: \(\left\{{}\begin{matrix}SO\perp HK\\SC\perp HK\end{matrix}\right.\) \(\Rightarrow HK\perp\left(SAC\right)\) (đpcm) \(\Rightarrow HK\perp AI\) (đpcm)

QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023

a) Ta có:

\(SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot CB\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AB \bot CB\)

\( \Rightarrow CB \bot \left( {SAB} \right)\)

\(SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot CD\)

\(ABC{\rm{D}}\) là hình vuông \( \Rightarrow AD \bot CD\)

\( \Rightarrow CD \bot \left( {SAD} \right)\)

b) Ta có:

\(\left. \begin{array}{l}CB \bot \left( {SAB} \right) \Rightarrow CB \bot AH\\AH \bot SB\end{array} \right\} \Rightarrow AH \bot \left( {SBC} \right) \Rightarrow AH \bot SC\)

\(\left. \begin{array}{l}CD \bot \left( {SAD} \right) \Rightarrow CD \bot AK\\AK \bot SD\end{array} \right\} \Rightarrow AK \bot \left( {SC{\rm{D}}} \right) \Rightarrow AK \bot SC\)

\( \Rightarrow SC \bot \left( {AHK} \right) \Rightarrow SC \bot HK\)

\(\begin{array}{l}\Delta SAB = \Delta SA{\rm{D}}\left( {c.g.c} \right) \Rightarrow SH = SK,SB = S{\rm{D}}\\\left. \begin{array}{l} \Rightarrow \frac{{SH}}{{SB}} = \frac{{SK}}{{S{\rm{D}}}} \Rightarrow HK\parallel B{\rm{D}}\\SA \bot \left( {ABC{\rm{D}}} \right) \Rightarrow SA \bot B{\rm{D}}\end{array} \right\} \Rightarrow SA \bot HK\end{array}\)

\(\left. \begin{array}{l}SC \bot HK\\SA \bot HK\end{array} \right\} \Rightarrow HK \bot \left( {SAC} \right) \Rightarrow HK \bot AI\)

21 tháng 1 2021

a) Xét tam giác SAB và tam giác SAD có: 

+) Chung SA

+) \(AB=AD\)

+) \(\widehat{SAB}=\widehat{SAD}=90^0\) (Vì \(SA\perp\left(ABCD\right)\Rightarrow\left\{{}\begin{matrix}SA\perp AB\\SA\perp AD\end{matrix}\right.\) )

\(\Rightarrow\Delta SAB=\Delta SAD\left(c-g-c\right)\)

\(\Rightarrow\widehat{SAB}=\widehat{SAD}\)

\(\Rightarrow\Delta SAH=\Delta SAK\left(ch-gn\right)\)

\(\Rightarrow SH=SK\)

Mà SB=SD (Do \(\Delta SAB=\Delta SAD\))

\(\Rightarrow\dfrac{SH}{SB}=\dfrac{SK}{SD}\)

\(\Rightarrow\)HK||BD( Áp dụng Talet cho tam giác SBD)

b)Đặt SA=x, AB=y

Gọi O là tâm của đáy (ABCD), trong mp(SAC) cho SO cắt AI tại J

S A C I J O

Ta tính được \(SC=\sqrt{x^2+2y^2}\) và SO=\(\sqrt{x^2+\dfrac{y^2}{2}}\)

Áp dụng định lí cos cho tam giác OSC có:

\(2SO.SC.\cos OSC=SO^2+SC^2-OC^2=x^2+\dfrac{y^2}{2}+x^2+2y^2-\dfrac{y^2}{2}=2x^2+2y^2\)

\(\Rightarrow SO.SC.cosOSC=x^2+y^2\)

\(\dfrac{SJ}{SO}=\dfrac{SI}{SO.cosOSC}=\dfrac{SA^2}{SC.SO.cosOSC}=\dfrac{x^2}{x^2+y^2}\left(1\right)\)

\(SK=\dfrac{SA^2}{SD}\Rightarrow\dfrac{SK}{SD}=\dfrac{SA^2}{SD^2}=\dfrac{x^2}{x^2+y^2}\left(2\right)\)

Từ (1) và (2), áp dụng định lí Talet đảo cho tam giác SDO ta có KJ||DO hay KJ||BD

Chứng minh tương tự ta có: JH||BD

Mà HK||BD nên K,H,J thẳng hàng 

\(\Rightarrow\exists1\) mặt phẳng chứa 4 điểm A,H,I,K (Vì AI cắt HK tại J)

\(\Rightarrow I\in mp\left(AHK\right)\)(đpcm)

Ta có: \(\left\{{}\begin{matrix}BD\perp AC\\SA\perp\left(ABCD\right)\Rightarrow SA\perp BD\end{matrix}\right.\Rightarrow BD\perp\left(SAC\right)\)

Mà HK||BD

\(\Rightarrow HK\perp\left(SAC\right)\left(đpcm\right)\)

 

 

NV
13 tháng 1 2021

Đề bài sai rồi bạn

Muốn HK song song BD thì H, K phải là hình chiếu của A lên SB và SD

15 tháng 1 2021

Dạ em nhầm ạ, đề bài là hình chiếu của A trên SC, SD ạ

15 tháng 12 2017

Đáp án C

3 tháng 4 2018

Đáp án là C

NV
30 tháng 6 2021

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SBA}\) là góc giữa SB và (ABCD)

\(\Rightarrow\widehat{SBA}=45^0\Rightarrow\Delta SAB\) vuông cân \(\Rightarrow\left\{{}\begin{matrix}SA=AB=a\\SB=a\sqrt{2}\end{matrix}\right.\) 

\(SC=\sqrt{SA^2+AC^2}=\sqrt{a^2+2a^2}=a\sqrt{3}\)

\(\dfrac{V_{SAHIK}}{V_{SABCD}}=\dfrac{2V_{SAHI}}{2V_{SABC}}=\dfrac{V_{SAHI}}{V_{SABC}}=\dfrac{SH}{SB}.\dfrac{SI}{SC}=\left(\dfrac{SA}{SB}\right)^2\left(\dfrac{SA}{SC}\right)^2=\left(\dfrac{a}{a\sqrt{2}}\right)^2\left(\dfrac{a}{a\sqrt{3}}\right)^2=\dfrac{1}{6}\)

\(\Rightarrow V_{SAIHK}=\dfrac{1}{6}V_{SABCD}=\dfrac{1}{6}.\dfrac{1}{3}.SA.AB^2=\dfrac{a^3}{18}\)

NV
30 tháng 6 2021

Bạn coi lại đề, AHIK là 1 tứ giác nên ko thể có thể tích

21 tháng 11 2019

Chọn C

Dựa vào giả thiết ta có B', C', D' lần lượt là hình chiếu của A lên SB, SC, SD.

Tam giác SAC vuông cân tại A nên C' là trung điểm của SC.

Trong tam giác vuông SAB' ta có: