K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2022

Đặt \(A=1^2+2^2+3^2+...+2014^2+2015^2+2016^2+2017^2+2018^2\)

\(A=\left(1^2+2^2+3^2\right)+...+\left(2014^2+2015^2+2016^2\right)+\left(2017^2+2018^2\right)\)

Ta có: \(\left\{{}\begin{matrix}\left(1^2+2^2+3^2\right)⋮3\\...\\\left(2014^2+2015^2+2016^2\right)⋮3\\\left(2017^2+2018^2\right)\equiv2\left(mod3\right)\end{matrix}\right.\)

⇒ \(A\equiv2\left(mod3\right)\)

⇒ A không là số chính phương

10 tháng 2 2022

Cho mk hỏi là 2 (mod 3) là jz

10 tháng 2 2022

S = 12 + 22 + 32 + ... + 20182

= 1.2 + 2.3 + 3.4 + ... + 2018.2019 - (1 + 2 + 3 + 4 + ... + 2018) 

\(\dfrac{2018.2019.2020}{3}-\dfrac{2018.2019}{2}=1009.673.367.11\)

=> S không là số chính phươn 

1/ Xét \(\left(n^{1010}\right)^2=n^{2020}< n^{2020}+1=\left(n^{1010}+1\right)^2-2n^{1010}< \left(n^{1010}+1\right)^2\)

Vì \(n^{2020}+1\)nằm ở giữa 2 số chính phương liên tiếp là \(\left(n^{1010}\right)^2\)và \(\left(n^{1010}+1\right)^2\)nên không thể là số chính phương.

2/ Mình xin sửa đề là 1 tí đó là tìm \(n\inℤ\)để A là số chính phương nha bạn, vì A hoàn toàn có thể là số chính phương

\(A>n^4+2n^3+n^2=\left(n^2+n\right)^2,\forall n\inℤ\)

\(A< n^4+n^2+9+2n^3+6n^2+6n=\left(n^2+n+3\right)^2,\forall n\inℤ\)

Vì A bị kẹp giữa 2 số chính phương là \(\left(n^2+n\right)^2,\left(n^2+n+3\right)^2\)nên A là số chính phương khi và chỉ khi:

+) \(A=\left(n^2+n+1\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+1+2n^3+2n^2+2n\)

\(\Leftrightarrow n^2+n-6=0\Leftrightarrow\orbr{\begin{cases}n=2\\n=-3\end{cases}}\)

+) \(A=\left(n^2+n+2\right)^2\Rightarrow n^4+2n^3+2n^2+n+7=n^4+n^2+4+2n^3+4n^2+4n\)

\(\Leftrightarrow3n^2+3n-3=0\Leftrightarrow x=\frac{-1\pm\sqrt{5}}{2}\notinℤ\)---> Với n=-3;2 thì A là số chính phương.

3/ Bằng phản chứng giả sử \(n^3+1\)là số chính phương:

---> Đặt: \(n^3+1=k^2,k\inℕ^∗\Rightarrow n^3=k^2-1=\left(k-1\right)\left(k+1\right)\)

Vì n lẻ nên (k-1) và (k+1) cùng lẻ ---> 2 số lẻ liên tiếp luôn nguyên tố cùng nhau

Lúc này (k-1) và (k+1) phải là lập phương của 2 số tự nhiên khác nhau

---> Đặt: \(\hept{\begin{cases}k-1=a^3\\k+1=b^3\end{cases},a,b\inℕ^∗}\)

Vì \(k+1>k-1\Rightarrow b^3>a^3\Rightarrow b>a\)---> Đặt \(b=a+c,c\ge1\)

Có \(b^3-a^3=\left(k+1\right)-\left(k-1\right)\Leftrightarrow\left(a+c\right)^3-a^3=2\Leftrightarrow3ca^2+3ac^2+c^3=2\)

-----> Quá vô lí vì \(a,c\ge1\Rightarrow3ca^2+3ac^2+c^3\ge7\)

Vậy mâu thuẫn giả thiết ---> \(n^3+1\)không thể là số chính phương với n lẻ.

23 tháng 7 2018

hóng ......ahahah

3 tháng 7 2017

a) A=(n+1)(n+2)(n+3)(n+4)+1 

A= (n+1)(n+4)(n+2)(n+3)+1

A=(n2+5n+4)(n2+5n+6)+1

Đặt n2+5n+5 =y ta có:

A=(y-1)(y+1) +1 =y2-1+1=y2

\(\Rightarrow\)A= (n2+5n+5) là 1 số chính phương

b)Đề sai ở chỗ 2017.2018 sửa lại là: 2.2017.2018

Thì A = 20172+20182+2.2017.2018

     A = (2017+2018)2 

     A = 40352 là 1 số chính phương .

3 tháng 7 2017

thanks pn nhìu

2 tháng 8 2018

\(1^3+2^3+...+2018^3\)

\(=1+1.2.3+2+...+2017.2018.2019+2018\)

\(=\left(1.2.3+2.3.4+...+2017.2018.2019\right)+\left(1+2+...+2018\right)\)

\(=\frac{2017.2018.2019.2020}{4}+\frac{2019.2018}{2}=\frac{2017.2018.2019.2020+2019.2018.2}{4}\)