cho tam giác abc vuông tại a. Biết góc abc =50 độ. lấy điểm m là trung điểm ac. Trên tia đối của tia mb lấy e sao cho mb=me
a) Tính số đo góc acm
b)cm tam giác amb= tam giác cme
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cm: a) Xét t/giác AMB và t/giác CME
có: AM = MC (gt)
BM = ME (gt)
\(\widehat{AMB}=\widehat{CME}\)(đối đỉnh)
=> t/giác AMB = t/giác CME (c.g.c)
b) Ta có: AB < BC (cgv < ch)
Mà AB = CE (vì t/giác AMB = t/giác CME)
=> CE < BC
c) Ta có: CE < BC (cmt)
=> \(\widehat{MBC}< \widehat{MEC}\) (quan hệ giữa góc và cạnh đối diện)
Mà \(\widehat{MEC}=\widehat{ABM}\) (vì t/giác AMB = t/giác CME)
=> \(\widehat{ABM}>\widehat{MBC}\)
d) Xét t/giác AME và t/giác CMB
có: AM = MC (gt)
ME = MB (gt)
\(\widehat{AME}=\widehat{CMB}\)(đối đỉnh)
=> t/giác AME = t/giác CMB (c.g.c)
=> \(\widehat{CBM}=\widehat{MEA}\) (2 góc t/ứng)
Mà 2 góc này ở vị trí so le trong
=> AE // BC (Đpcm)
a) Xét tam giác AMB và tam giác CME có :
BM=ME (gt)
Góc AMB = góc CME ( đối đỉnh )
AM = MC ( gt )
-> vậy tam giác AMB = tam giác CME (c.g.c)
b)
a/(c.g.c)
b/ CE=AB ( cặp cạnh tương ứng)
Mà: AB<BC( cạnh huyền lớn nhất)
Nên CE<BC
c/góc ABM=góc CEM(cặp góc tương ứng) (1)
Xét tam giác BCE có: CE<BC( CMT)
Suy ra góc CEM<góc MBC (2) ( Quan hệ giữa góc và cạnh đối diện trong 1 tam giác)
Vậy: từ (1) và (2), ta có: góc ABM< góc MBC
d/góc ABM=góc CEM, lại ở vị trí SLT nên AE//BC
a: Xét ΔMAC và ΔMBE có
MA=MB
\(\widehat{AMC}=\widehat{BME}\)
MC=ME
Do đó: ΔMAC=ΔMBE
b: Xét tứ giác ACBE có
M là trung điểm của AB
M là trung điểm của CE
Do đó:ACBE là hình bình hành
Suy ra: AC//BE
c: \(\widehat{ACM}=90^0-52^0=38^0\)
a) Xét tam giác MAC và tam giác MBE:
+ MA = MB (M là trung điểm của AB).
+ MC = ME (gt).
+ \(\widehat{AMC}=\widehat{BME}\) (đối đỉnh).
\(\Rightarrow\) Tam giác MAC = Tam giác MBE (c - g - c).
b) Ta có: \(\widehat{MAC}=\widehat{MBE}\) (Tam giác MAC = Tam giác MBE).
Mà 2 góc ở vị trí so le trong.
\(\Rightarrow\) AC // BE (dhnb).
c) Tam giác AMC vuông tại A (\(\widehat{A} =\) \(90^o\)).
\(\Rightarrow\) \(\widehat{AMC}+\widehat{ACM}=\) \(90^o\).
Mà \(\widehat{AMC}=\) \(52^o\left(gt\right).\)
\(\Rightarrow\) \(\widehat{ACM}=\) \(38^o.\)
Câu C bạn cm AFCE là hình chữ nhật , FE là đường chéo => E,F,M thẳng hàng vì 2 đường chéo hình chữ nhật đi qua trung điểm của mỗi đường.
a: Đề sai rồi bạn
b: Xét ΔAMB và ΔCME có
MA=MC
\(\widehat{AMB}=\widehat{CME}\)
MB=ME
Do đó: ΔAMB=ΔCME