x+10 / 2000 + x+(-9) / 2001 + x+8 / 2002
GIẢI NHANH HỘ VỚI !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S = 1 + 2 - 3 - 4 + 5 + 6 - 7 - 8 + 9 + 10 - ...... + 1998 - 1999 - 2000 + 2001 + 2002
S = 1 + (2 - 3 - 4 + 5 )+ (6 - 7 - 8 + 9) + (10 - ...... + (1998 - 1999 - 2000 + 2001) + 2002
S=1+0+0...+0+2002
S= 1+2002
S=2003
Lời giải:
$S=(1+2-3-4)+(5+6-7-8)+(9+10-11-12)+...+(1997+1998-1999-2000)+2001+2002$
$=\underbrace{(-4)+(-4)+....+(-4)}_{500}+2001+2002$
$=(-4).500+2001+2002=2003$
\(\dfrac{1}{\left(x+2000\right)\left(x+2001\right)}+\dfrac{1}{\left(x+2001\right)\left(x+2002\right)}+...+\dfrac{1}{\left(x+2009\right)\left(x+2010\right)}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2001}+\dfrac{1}{x+2001}-\dfrac{1}{x+2002}+...+\dfrac{1}{x+2009}-\dfrac{1}{x+2010}=\dfrac{10}{11}\)
\(\Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2010}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{x+2010-x-2000}{\left(x+2000\right)\left(x+2010\right)}=\dfrac{10}{11}\)
\(\Leftrightarrow\dfrac{1}{x+2000}-\dfrac{1}{x+2010}=\dfrac{10}{11}\\ \Leftrightarrow\dfrac{10}{\left(x+2000\right)\left(x+2010\right)}=\dfrac{10}{11}\\ \Leftrightarrow\left(x+2000\right)\left(x+2010\right)=11\\ \Leftrightarrow...\)
a) \(\left|x-2000\right|+\left|x-2002\right|=\left|x-2000\right|+\left|2002-x\right|\)
\(\ge\left|x-2000+2002-x\right|=2\) (1)
Dấu "=" \(\Leftrightarrow\left(x-2000\right)\left(2002-x\right)\ge0\)
\(\Leftrightarrow2000\le x\le2002\)
+ \(\left|x-2001\right|\ge0\forall x\). "=" \(\Leftrightarrow x=2001\) (2)
Từ (1) và (2) suy ra \(A\ge2\)
Dấu "=" \(\Leftrightarrow x=2001\)
b) \(B=\left|x-8\right|+\left|x-9\right|+\left|x-10\right|+\left|x+11\right|\)
+ \(\left|x-10\right|+\left|x+11\right|=\left|x+11\right|+\left|10-x\right|\)
\(\ge\left|x+11+10-x\right|=21\) (3)
Dấu "=" \(\Leftrightarrow\left(x+11\right)\left(10-x\right)\ge0\Leftrightarrow-11\le x\le10\)
+ \(\left|x-8\right|+\left|x-9\right|\ge\left|x-8+9-x\right|=1\) (4)
"=" \(\Leftrightarrow\left(x-8\right)\left(9-x\right)\ge0\Leftrightarrow8\le x\le9\)
Từ (3) và (4) suy ra \(B\ge22\)
"=" \(\Leftrightarrow8\le x\le9\)
2) \(\dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{y}{4}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1}{8}-\dfrac{2y}{8}\)
\(\Rightarrow\dfrac{5}{x}=\dfrac{1-2y}{8}\)
\(\Rightarrow x\left(1-2y\right)=40\)
Vì \(1-2y\) luôn là số lẻ nên \(1-2y\in\left\{\pm1;\pm5\right\}\)
\(\Rightarrow y=\left\{0;1;-2;3\right\}\)
\(\Rightarrow x\in\left\{40;-40;8;-8\right\}\)
Vậy các cặp số x,y thỏa mãn là \(\left(0;40\right);\left(1;-40\right);\left(-2;8\right);\left(3;-8\right)\)
Ta có :
\(B=\dfrac{2000+2001}{2001+2002}=\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}\)
Mặt khác :
\(\dfrac{2000}{2001}>\dfrac{2000}{2001+2002}\)
\(\dfrac{2001}{2002}>\dfrac{2001}{2001+2002}\)
\(\Leftrightarrow A=\dfrac{2000}{2001}+\dfrac{2001}{2002}>\dfrac{2000}{2001+2002}+\dfrac{2001}{2001+2002}=\dfrac{2000+2001}{2001+2002}=B\)
\(\Leftrightarrow A>B\)
\(\frac{x-1}{2018}+\frac{x-10}{2009}+\frac{x-19}{2000}=3\)
\(\frac{x-1}{2018}+\frac{x-10}{2009}+\frac{x-19}{2000}-3=0\)
\(\left(\frac{x-1}{2018}-1\right)+\left(\frac{x-10}{2009}-1\right)+\left(\frac{x-19}{2000}-1\right)=0\)
\(\frac{x-1-2018}{2018}+\frac{x-10-2009}{2009}+\frac{x-19-2000}{2000}=0\)
\(\frac{x-2019}{2018}+\frac{x-2019}{2009}+\frac{x-2019}{2000}=0\)
\(\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{2009}+\frac{1}{2000}\right)=0\)
Vì \(\left(\frac{1}{2018}+\frac{1}{2009}+\frac{1}{2000}\right)\ne0\)do đó :
\(x-2019=0\)
\(x=2019\)
\(\frac{x-1}{2018}+\frac{x-10}{2009}+\frac{x-19}{2000}=3.\)
\(\Leftrightarrow\frac{x-1}{2018}-1+\frac{x-10}{2009}-1+\frac{x-19}{2000}-1=0\)
\(\Leftrightarrow\frac{x-2019}{2018}+\frac{x-2019}{2009}+\frac{x-2019}{2000}=0\)
\(\Leftrightarrow\left(x-2019\right)\left(\frac{1}{2018}+\frac{1}{2009}+\frac{1}{2000}\right)=0\)
\(\Leftrightarrow x-2019=0\Leftrightarrow x=2019\)
Ta có: \(S=1-2-3+4+5-6-7+8+9-...-1998-1999+2000+2001\)
\(\Leftrightarrow S=\left(1-2\right)-\left(3-4\right)+\left(5-6\right)-\left(7-8\right)+...-\left(1999-2000\right)+2001\)
\(\Leftrightarrow S=\left(-1\right)-\left(-1\right)+\left(-1\right)-\left(-1\right)+...-\left(-1\right)+2001\) ( có 500 chữ số \(-1\))
\(\Leftrightarrow S=2001\)
Dễ thấy 2001=2000+1=x+1,thay vào C ta có:
\(C=x^{20}-\left(x+1\right)x^{19}+\left(x+1\right)x^{18}-\left(x+1\right)x^{17}+...-\left(x+1\right)x^3+\left(x+1\right)x^2\)
\(=x^{20}-x^{20}-x^{19}+x^{19}+x^{18}-x^{18}-x^{17}+...-x^4-x^3+x^3+x^2=x^2=2001^2=4004001\)
Vậy C=4004001