K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2018

Chọn A

10 tháng 8 2018


QT
Quoc Tran Anh Le
Giáo viên
22 tháng 9 2023


a)

Ta có: (ADD’A’) // (CBC’B’);

           (ADD’A’) ∩ (DCB’A’) = A’D;

           (CBC’B’) ∩ (DCB’A’) = B’C.

Do đó A’D // B’C, mà B’C ⊂ (B’CM) nên A’D // (B’CM).

Tương tự: (ABB’A’) // (DCC’D’);

                 (ABB’A’) ∩ (DMB’N) = MB’;

                 (DCC’D’) ∩ (DMB’N) = DN.

Do đó MB’ // DN, mà MB’ ⊂ (B’CM) nên DN // (B’CM).

Ta có: A’D // (B’CM);

           DN // (B’CM);

           A’D, DN cắt nhau tại điểm D và cùng nằm trong mp(A’DN)

Do đó (A’DN) // (B’CM).

b)

 Trong mp(A’B’C’D’), gọi J là giao điểm của A’N và B’D’.

Trong mp(BDD’B’), D’B cắt DJ tại E.

Ta có: D’B ∩ DJ = {E} mà DJ ⊂ (A’DN) nên E là giao điểm của D’B và (A’DN).

Tương tự, trong mp(ABCD), gọi I là giao điểm của CM và BD.

Trong mp(BDD’B’), D’B cắt B’I tại F.

Ta có: D’B ∩ B’I = {F} mà B’I ⊂ (B’CM) nên F là giao điểm của D’B và (B’CM).

• Ta có: (A’DN) // (B’CM);

              (A’DN) ∩ (BDD’B’) = DJ;

              (B’CM) ∩ (BDD’B’) = B’I.

Do đó DJ // B’I.

Trong mp(BDD’B’), xét DBDE có IF // DE nên theo định lí Thalès ta có: \(\frac{{BI}}{{BD}} = \frac{{BF}}{{BE}}\) (1)

Trong mp(ABCD), gọi O là giao điểm của hai đường chéo AC và BD trong hình bình hành ABCD. Khi đó O là trung điểm của AC, BD.

Xét ∆ABC, hai đường trung tuyến BO, CM cắt nhau tại I nên I là trọng tâm của tam giác

Suy ra \(\frac{{BI}}{{BO}} = \frac{2}{3}\)  hay \(\frac{{BI}}{{\frac{1}{2}BD}} = \frac{{2BI}}{{BD}} = \frac{2}{3}\)

Do đó \(\frac{{BI}}{{BD}} = \frac{1}{3}\) (2)

Từ (1) và (2) suy ra \(\frac{{BF}}{{BE}} = \frac{1}{3}\)

Suy ra \(\frac{{D'E}}{{D'F - D'E}} = \frac{1}{{3 - 1}}\) hay \(\frac{{D'E}}{{EF}} = \frac{1}{2}\).

Chứng minh tương tự ta cũng có \(\frac{{D'E}}{{D'F}} = \frac{{D'J}}{{D'B'}} = \frac{1}{3}\)

Suy ra \(\frac{{D'E}}{{D'F - D'E}} = \frac{1}{{3 - 1}}\)  hay \(\frac{{D'E}}{{EF}} = \frac{1}{2}\)

Do đó \(\frac{{BF}}{{EF}} = \frac{{D'E}}{{EF}} = \frac{1}{2}\) nên BF = D’E = ½ EF.

10 tháng 6 2018

Đáp án B.

23 tháng 3 2017

19 tháng 2 2017

Hướng dẫn: B

11 tháng 3 2017

Đáp án C.

+ Trong  mặt phẳng (BB’D’D) gọi I = MO ∩ DD', H = MO ∩ B'D'

Trong  mặt phẳng (DD’C’C) gọi J = NI ∩ DC

Trong  mặt phẳng (ABCD) gọi K = JO ∩ AB

Trong  mặt phẳng (AA’B’B) gọi F = MK ∩ A'B'

Trong  mặt phẳng (A’B’C’D’) gọi E = B'C' ∩ FN=> E = BC ∩ (MNO)

 

12 tháng 4 2018

Đáp án C.

+ Trong  mặt phẳng (BB’D’D) gọi I = M O ∩ DD ' , H = M O ∩ B ' D '  

Trong  mặt phẳng (DD’C’C) gọi  J = N I ∩ D C

Trong  mặt phẳng (ABCD) gọi  K = J O ∩ A B

Trong  mặt phẳng (AA’B’B) gọi F = M K ∩ A ' B '  

Trong  mặt phẳng (A’B’C’D’) gọi

E = B ' C ' ∩ F N ⇒ E = B C ∩ ( M N O )  

BO = B’H = OD ⇒ C D H D ' = 1 3  (OD // D’H) ⇒ I D I D ' = O D H D ' = 1 3  

Mà J D / / N D ' ⇒ J D N D ' = I D I D ' = 1 3  

Có  N D ' = N C '  

J D = K B = K B ' ⇒ F B ' C N = 1 3 = B ' E E C = 1 3

18 tháng 2 2017