K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2016

a) Ta có: 2B = \(2^{101}-2^{100}+2^{99}-2^{98}+...+2^3\)

                B = \(2^{100}-2^{99}+2^{98}-2^{97}+...+2^2\)

        \(\Rightarrow\) 3B = \(2^{101}+2^2\)

        \(\Rightarrow\) B = \(\frac{2^{101}+4}{3}\)

2 tháng 10 2021

a) \(A=1+2+2^2+...+2^{50}\)

\(\Rightarrow2A=2+2^2+...+2^{51}\)

\(\Rightarrow A=2A-A=2+2^2+...+2^{51}-1-2-2^2-...-2^{50}=2^{51}-1\)

b) \(B=1+3+3^2+...+3^{100}\)

\(\Rightarrow3B=3+3^2+...+3^{101}\)

\(\Rightarrow2B=3B-B=3+3^2+...+3^{101}-1-3-3^2-...-3^{100}=3^{101}-1\)

\(\Rightarrow B=\dfrac{3^{101}-1}{2}\)

c) \(C=5+5^2+...+5^{30}\)

\(\Rightarrow5C=5^2+5^3+...+5^{31}\)

\(\Rightarrow4C=5C-C=5^2+5^3+...+5^{31}-5-5^2-...-5^{30}=5^{31}-5\)

\(\Rightarrow C=\dfrac{5^{31}-5}{4}\)

d) \(D=2^{100}-2^{99}+2^{98}-...+2^2-2\)

\(\Rightarrow2D=2^{101}-2^{100}+2^{99}-...+2^3-2^2\)

\(\Rightarrow3D=2D+D=2^{101}-2^{100}+2^{99}-...+2^3-2^2+2^{100}-2^{99}+...+2^2-2=2^{101}-2\)

\(\Rightarrow D=\dfrac{2^{101}-2}{3}\)

27 tháng 10 2024

1990.1990 -1992.1988

 

23 tháng 10 2019

5 tháng 8 2023

\(A=2^{100}-2^{99}+2^{98}-2^{97}+....-2^3+2^2-2+1\\ A=\left(2^{100}+2^{98}+...+2\right)-\left(2^{99}+2^{97}+...+1\right)\)

Gọi \(\left(2^{100}+2^{98}+...+2\right)\)là B

\(B=\left(2^{100}+2^{98}+...+2\right)\\ 2B=2^{102}+2^{100}+.....+2^2\\ 2B-B=\left(2^{102}+2^{100}+.....+2^2\right)-\left(2^{100}+2^{98}+...+2\right)\\ B=2^{102}-2\)

Gọi \(\left(2^{99}+2^{97}+...+1\right)\) là C

\(C=\left(2^{99}+2^{97}+...+1\right)\\ 2C=2^{101}+2^{99}+....+2\\ 2C-C=\left(2^{101}+2^{99}+9^{97}+...+2\right)-\left(2^{99}+9^{97}+...+1\right)\\ C=2^{101}-1\)

\(A=B+C\\ =>A=2^{102}-2+2^{101}-1\\ A=2^{101}\left(2+1\right)-3\\ A=2^{101}\cdot3-3\\ A=3\cdot\left(2^{101}-1\right)\)

HQ
Hà Quang Minh
Giáo viên
5 tháng 8 2023

\(\dfrac{1}{2}A=2^{99}-2^{98}+...-1+\dfrac{1}{2}\\ \Rightarrow A-\dfrac{1}{2}A=2^{100}-\dfrac{1}{2}\\ \Rightarrow A=2^{101}-1\)

26 tháng 12 2023

\(2^{100}-2^{99}+2^{98}-2^{97}+2^{96}-2^{95}+...+2^4-2^3+2^2\)

\(=\left(2^{100}-2^{99}+2^{98}\right)-\left(2^{97}-2^{96}+2^{95}\right)+...+\left(2^4-2^3+2^2\right)\)

\(=2^{96}\left(2^4-2^3+2^2\right)-2^{93}\left(2^4-2^3+2^2\right)+...+\left(2^4-2^3+2^2\right)\)

\(=12\left(2^{96}-2^{93}+...+1\right)⋮12\)

NV
14 tháng 12 2020

\(A=2^{100}-\left(2^{99}+2^{98}+...+2+1\right)\)

Đặt \(B=2^{99}+2^{98}+...+2+1\)

\(\Rightarrow2B=2^{100}+2^{99}+...+2^2+2\)

\(\Rightarrow2B-B=2^{100}-1\Leftrightarrow B=2^{100}-1\)

\(\Rightarrow A=2^{100}-\left(2^{100}-1\right)=1\)

22 tháng 10 2021

Công thức để làm bài này: a-b+c-d+e-...+y-z

Tách ra thành: (a-b-d-...-z) + (c+e+...+y) = [a-(b+d+...+z)] + (c+e+...+y)

Rồi dùng phương pháp tính tổng dãy số.

(số cuối - số đầu) : khoảng cách + 1 (số số hạng)

(số đầu + số cuối) x số số hạng : 2 (tổng)

17 tháng 3 2021

help me , pls

12 tháng 5 2016

M =1/1000+13/1000+25/1000+37/1000+...+121/1000+133/1000

\(M=\frac{1+13+25+...+133}{1000}\)

\(M=\frac{\left(133+1\right)\times12:2}{1000}\)

\(M=\frac{804}{1000}=0,804\)

15 tháng 7 2017

12 : 2 làm gì có đâu