K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2022

a = 16 nha 

TL

\(\frac{a}{10}=\frac{24}{15}\)

\(\frac{a}{10}=\frac{8}{5}\)

\(a=16\)

HT

28 tháng 10 2021

B

B

28 tháng 10 2021

\(Ư\left(30\right)=\left\{1;2;3;5;6;10;15;30\right\}\\ \Rightarrow x=5\left(B\right)\\ B\left(8\right)=\left\{0;8;16;24;32;...\right\}\\ \Rightarrow x=24\left(B\right)\)

19 tháng 8 2015

ax(1+1/3+1/6+1/10+...+1/45)=165/178

ax2x(1/2+1/6+1/12+...+1/90)=165/178

2xax(1/1x2+1/2x3+1/3x4+...+1/9x10)=165/178

2xax(1-1/2+1/2-1/3+1/3-1/4+...+1/9-1/10)=165/178

2xax(1-1/10)=165/178

2xax9/10=165/178

2xa=165/178:9/10=275/267

a=275/534

\(a+\frac{a}{3}+\frac{a}{6}+...+\frac{a}{45}=\frac{165}{178}\)

\(\Rightarrow a\left(1+\frac{1}{3}+\frac{1}{6}+...+\frac{1}{45}\right)=\frac{165}{178}\)

\(\Rightarrow a.2\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+...+\frac{1}{90}\right)=\frac{165}{178}\)

\(\Rightarrow a\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{9.10}\right)=\frac{165}{178}:2\)

\(\Rightarrow a\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{9}-\frac{1}{10}\right)=\frac{165}{356}\)

\(\Rightarrow a\left(1-\frac{1}{10}\right)=\frac{165}{356}\)

\(\Rightarrow a.\frac{9}{10}=\frac{165}{356}\)

\(\Rightarrow a=\frac{165}{356}:\frac{9}{10}=\frac{275}{534}\)

vậy \(a=\frac{275}{534}\)

16 tháng 11 2017

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)

\(=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{400}\right)\)

\(=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{400}\right)\)

\(=20-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{20^2}\right)< 20\) (1)

Đặt B = \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2}=1-\frac{1}{2}\)

\(\frac{1}{3^2}< \frac{1}{2.3}=\frac{1}{2}-\frac{1}{3}\)

.......

\(\frac{1}{20^2}< \frac{1}{19.20}=\frac{1}{19}-\frac{1}{20}\)

\(\Rightarrow B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{19}-\frac{1}{20}=1-\frac{1}{20}=\frac{19}{20}\)

\(\Rightarrow A>20-1=19\) (2)

Từ (1) và (2) => 19 < A < 20 

Vậy...

17 tháng 11 2017

số số hạng là 19 chứ ko phải 20 ST

25 tháng 3 2020

ta có \(\frac{a}{b}.\frac{35}{24}=\frac{35a}{24b};\frac{a}{b}.\frac{15}{16}=\frac{15a}{16b}\)

=> \(\hept{\begin{cases}a⋮24,16\\b\inƯ\left(35,15\right)\end{cases}}\)

ta có \(\frac{a}{b}\)nhỏ nhất \(\Leftrightarrow a=BCNN\left(24,16\right)=48\)

zà \(b=UCLN\left(35,15\right)=5\)

zậy phân số \(\frac{a}{b}\)cần tìm là \(\frac{48}{5}\)

25 tháng 1 2019

28 tháng 3 2017

a, Ta có: 8 = 2 3 ; 10 = 2.5

BCNN(8; 10) =  2 3 .5 = 40

BC(8; 10) =B(40)= { 0; 40; 80; 120;………}

b, Ta có: 6 =2.3; 24=  2 3 . 3; 40 =  2 3 .5

BCNN( 6; 24; 40) =  2 3 .3. 5= 120

BC( 6; 24; 40)= B(120) ={ 0; 120; 240; 360….}

c, Ta có: 8 = 2 3 ; 15 = 3.5; 20 =  2 2 .5

BCNN(8; 15;20) =  2 3 .3.5 = 120

BC( 8; 15; 20)= B(120) ={ 0; 120; 240; 360….}

d, Ta có: 30 = 2.3.5; 45 =  3 2 .5

BCNN(30; 45) = 2. 3 2 .5 = 90

BC (30; 45)  và nhỏ hơn 500 = { 0; 90; 180; 270; 360;480}

e, Ta có: a nhỏ nhất khác 0biết rằng a ⋮ 15 và a18

=> a = BCNN (15; 18)

Có: 15 = 3.5; 18 = 2. 3 2

BCNN(15; 18) = 2. 3 2 .5 = 90

Vậy a = 90

f, Ta có: 63 =  3 2 .7; 35 = 5.7; 105 = 3.5.7

BCNN(63; 35; 105) =  3 2 .5.7 = 315

BC(63; 35; 105) và nhỏ hơn 1000 = { 0; 315; 630; 945}

17 tháng 10 2023

a, Ta có: 8 = 2 3 ; 10 = 2.5

BCNN(8; 10) =  2 3 .5 = 40

BC(8; 10) =B(40)= { 0; 40; 80; 120;………}

b, Ta có: 6 =2.3; 24=  2 3 . 3; 40 =  2 3 .5

BCNN( 6; 24; 40) =  2 3 .3. 5= 120

BC( 6; 24; 40)= B(120) ={ 0; 120; 240; 360….}

c, Ta có: 8 = 2 3 ; 15 = 3.5; 20 =  2 2 .5

BCNN(8; 15;20) =  2 3 .3.5 = 120

BC( 8; 15; 20)= B(120) ={ 0; 120; 240; 360….}

d, Ta có: 30 = 2.3.5; 45 =  3 2 .5

BCNN(30; 45) = 2. 3 2 .5 = 90

BC (30; 45)  và nhỏ hơn 500 = { 0; 90; 180; 270; 360;480}

e, Ta có: a nhỏ nhất khác 0biết rằng a ⋮ 15 và a ⋮ 18

=> a = BCNN (15; 18)

Có: 15 = 3.5; 18 = 2. 3 2

BCNN(15; 18) = 2. 3 2 .5 = 90

Vậy a = 90

f, Ta có: 63 =  3 2 .7; 35 = 5.7; 105 = 3.5.7

BCNN(63; 35; 105) =  3 2 .5.7 = 315

BC(63; 35; 105) và nhỏ hơn 1000 = { 0; 315; 630; 945}

 

1 tháng 5 2017

Ta có :

\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{9999}{10000}\)

\(A=\left(1-\frac{1}{4}\right)+\left(1-\frac{1}{9}\right)+\left(1-\frac{1}{16}\right)+...+\left(1-\frac{1}{10000}\right)\)

\(A=\left(1+1+1+...+1\right)-\left(\frac{1}{4}+\frac{1}{9}+\frac{1}{16}+...+\frac{1}{10000}\right)\)

\(A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99\)\(\left(1\right)\)

gọi B là biểu thức trong ngoặc

Lại có :

\(B=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\)

\(B< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

\(B< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(B< 1-\frac{1}{100}< 1\)

\(\Rightarrow A=99-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)>99-\left(1-\frac{1}{100}\right)>98\)

\(\Rightarrow A>98\)\(\left(2\right)\)

từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(98< A< 99\)

vậy A không phải là số tự nhiên

4 tháng 5 2017

phần bạn đánh dấu (1) thì A<99 vì A= 99 trừ đi một số mà