Cho tam giác ABC vg tại A, có AB=3cm, AC=5cm,đường p/g AD.Đường vg góc với DC cắt AC ở E.
a) CM ABC~DEC
b) Tính BC,BD
c) Tính AD.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
b: BC=căn 3^2+5^2=căn 34(cm)
AD là phân giác
=>BD/AB=CD/AC
=>BD/3=CD/5=căn 34/8
=>BD=3/8*căn34(cm)
c: \(AD=\dfrac{2\cdot5\cdot3}{5+3}\cdot cos45=\dfrac{15}{8}\cdot\sqrt{2}\left(cm\right)\)
a:
Sửa đề tam giác DEC
Xet ΔABC vuông tại A và ΔDEC vuông tại D có
góc C chung
=>ΔABC đồng dạng với ΔDEC
b: \(BC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot5}{3+5}\cdot cos45=\dfrac{15\sqrt{2}}{8}\left(cm\right)\)
AD là phân giác
=>BD/AB=CD/AC
=>\(\dfrac{BD}{3}=\dfrac{CD}{5}=\dfrac{\sqrt{34}}{8}\)
=>\(BD=\dfrac{3\sqrt{34}}{8}\left(cm\right)\)
a)Xét 2 tam giác vuông ABC và DEC có
góc C chung
=> ABC~DEC(g.g)
b)TÍnh BC
Áp dụng định lí pi-ta-go vào tam giác vuông ABC
\(BC^2=AB^2+AC^2\)hay \(BC^2=3^2+5^2\)\(\Leftrightarrow\)\(BC^2=9+25\Rightarrow BC=\sqrt{9+25}\approx5,9\)
*TÍnh BD
Vì AD là tia fân giác của góc BAC nên ta có
\(\frac{BD}{DC}=\frac{AB}{AC}=\frac{3}{5}\)hay \(\frac{BD}{3}=\frac{DC}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{BD+DC}{3+5}=\frac{BC}{8}=\frac{5,9}{8}\)
\(\Rightarrow\)\(\frac{BD}{3}=\frac{5,9}{8}\Rightarrow BD=\frac{3.5,9}{8}=2,2125\)(cm)