cho phương trình x^2-2*(m-2)x+m-8 Với giá trị nào của m thì (d) cắt (P) tại 2 điểm phân biệt A(x1;y1), B(x2;y2) thỏa mãn y1+y2=x1+x2-2x1x2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=(1 - 1/3) x (1 - 1/4) x ... x (1 - 1/99)
=2/3 x 3/4 x ... x 98/99 (thực hiện phép trừ)
=2 x 1/99 (rút gọn các số giống nhau ở tử và mẫu)
=2/99 (kết quả cuối cùng)
PTHHĐGĐ là:
x^2-2x-m^2+2m=0
Δ=(-2)^2-4(-m^2+2m)
=4+4m^2+8m=(2m+2)^2
Để phương trình có hai nghiệm phân biệt thì 2m+2<>0
=>m<>-1
x1^2+2x2=3m
=>x1^2+x2(x1+x2)=3m
=>x1^2+x2^2+x1x2=3m
=>(x1+x2)^2-x1x2=3m
=>2^2-(-m^2+2m)=3m
=>4+m^2-2m-3m=0
=>m^2-5m+4=0
=>m=1 hoặc m=4
a/ Phương trình có 2 nghiệm phân biệt khi
\(\Delta'=m^2-m^2-0,5=-0,5< 0\)
Vậy pt này vô nghiệm với mọi m
PS: Xem lại đề đi nhé
a: Δ=(2m+2)^2-4(m-6)
=4m^2+8m+4-4m+24
=4m^2+4m+28
=(2m+1)^2+27>0
=>Phương trình luôn có hai nghiệm phân biệt
c: Để (1) có ít nhất 1 nghiệm dương thì
m-6<0 hoặc (2m+2>0 và m-6>0)
=>m>6 hoặc m<6
thay m=2 vào ta được phương trình:
x2-3x-2=0 <bấm máy>
* CM: delta=b2-4ac=(2m-1)2-4.1.(-m)= 4m2-4m+1+4m=4m2+1
ta thấy m2 >=0 <=> 4m2>=0 <=> 4m2+1>=1>0 <=> delta>0 Vậy phương trình luôn có 2 nghiệm phân biệt với mọi m.
* >=: lớn hơn hoặc bằng. <đề còn lại ghi k rõ nên mình k giúp được =))>
a: Sửa đề; (d): y=x-m+3
Khi m=1 thì (d): y=x-1+3=x+2
PTHĐGĐ là:
x^2=x+2
=>x^2-x-2=0
=>(x-2)(x+1)=0
=>x=2 hoặc x=-1
Khi x=2 thì y=2^2=4
Khi x=-1 thì y=(-1)^2=1
b: PTHĐGĐ là:
x^2-x+m-3=0
Δ=(-1)^2-4(m-3)
=1-4m+12=-4m+13
Để (d) cắt (P) tại hai điểm phân biệt thì -4m+13>0
=>m<13/4
c: y1+y2=3
=>x1^2+x2^2=3
=>(x1+x2)^2-2x1x2=3
=>1-2(m-3)=3
=>2(m-3)=-2
=>m-3=-1
=>m=2(nhận)