K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2022

= 0 nha

9 tháng 2 2022

1 + 1 - 1 x 2 = nhé

14 tháng 2 2022

chào bn mik đến từ năm 2022

x=11

y=13

30 tháng 7 2018

\(A=\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)

(ĐKXĐ: x\(\ge\) 0 ; x \(\ne\) 1 )

\(=\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)\)

\(=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right):\left(1-\sqrt{x}\right)\)

\(=\sqrt{x}+1\)

30 tháng 7 2018

\(A=\left(\dfrac{2\sqrt{x}+x+1}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)=\left(\dfrac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}+1}\right)\left(1-\dfrac{\sqrt{x}\left(\sqrt{x}-1\right)}{\sqrt{x}-1}\right):\left(1-\sqrt{x}\right)=\left(\sqrt{x}+1\right)\left(1-\sqrt{x}\right)\left(1-\sqrt{x}\right)=\left(1-x\right)\left(1-\sqrt{x}\right)=1-\sqrt{x}-x+x\sqrt{x}=x\sqrt{x}-x-\sqrt{x}+1\)

22 tháng 3 2018

Bạn Kiên giải đúng nhưng chưa rõ nên mình giải lại.

\(A=\frac{1}{3}+\frac{1}{6}+\frac{1}{10}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)

\(=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)

\(=\frac{2}{2.3}+\frac{2}{3.4}+\frac{2}{4.5}+...+\frac{2}{x\left(x+1\right)}=\frac{202}{201}\)

\(=2\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{x}-\frac{1}{\left(x+1\right)}\right)=\frac{202}{201}\)

\(=2\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{202}{201}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{\left(x+1\right)}=\frac{202}{201}:2=\frac{202}{402}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{202}{402}=-\frac{1}{402}=\frac{-1}{402}=\frac{1}{-402}\)

\(\Rightarrow\frac{1}{x+1}=\hept{\begin{cases}\frac{-1}{402}\\\frac{1}{-402}\end{cases}}\Rightarrow x+1=\hept{\begin{cases}402\\-402\end{cases}}\Rightarrow\hept{\begin{cases}x=402-1\\x=\left(-402\right)-1\end{cases}}\Rightarrow x=\hept{\begin{cases}401\\-403\end{cases}}\)

22 tháng 3 2018

\(\Rightarrow A=\frac{2}{6}+\frac{2}{12}+\frac{2}{20}+...+\frac{2}{x.\left(x+1\right)}=\frac{202}{201}\)\(\Rightarrow A=2.\left(\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{202}{201}\)

\(\Rightarrow A=2.\left(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{x.\left(x+1\right)}\right)=\frac{202}{201}\)

\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+....+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{202}{201}\)

\(\Rightarrow A=2.\left(\frac{1}{2}-\frac{1}{x+1}\right)=\frac{202}{201}\)

\(\Rightarrow\frac{1}{2}-\frac{1}{x+1}=\frac{202}{402}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{2}-\frac{202}{402}=\frac{-1}{402}\)

\(\Rightarrow\frac{1}{x+1}=\frac{1}{-402}\)

\(\Rightarrow x+1=-402\)

\(\Rightarrow x=-403\)

27 tháng 4 2018

Đặt \(C=\left(1+\frac{2}{3}\right)\left(1+\frac{2}{5}\right)\left(1+\frac{2}{7}\right).....\left(1+\frac{2}{2009}\right)\left(1+\frac{2}{2011}\right)\) ta có : 

\(C=\left(\frac{3+2}{3}\right)\left(\frac{5+2}{3+2}\right)\left(\frac{7+2}{5+2}\right).....\left(\frac{2009+2}{2007+2}\right)\left(\frac{2011+2}{2009+2}\right)\)

\(C=\frac{\left(3+2\right)\left(5+2\right)\left(7+2\right).....\left(2009+2\right)\left(2011+2\right)}{3\left(3+2\right)\left(5+2\right).....\left(2007+2\right)\left(2009+2\right)}\)

\(C=\frac{2011+2}{3}\)

\(C=\frac{2013}{3}\)

\(C=671\)

Vậy \(C=671\)

Chúc bạn học tốt ~ 

27 tháng 4 2018

1/2011

12 tháng 7 2016

a. |2x+1+3x+2| = |-1|-|0|

     |2x+3x+3|=1-0=1

     |5x+3| = 1

=> 5x+3=1        và         5x+3 = -1

=>x= -2/5           và          x=2/5

24 tháng 8 2018

B1:

a,\(\left(3x-2\right)\left(x-3\right)=3x^2-9x-2x+6=3x^2-11x+6\)

b,\(\left(2x+1\right)\left(x+3\right)=2x^2+6x+x+3=2x^2+7x+3\)

c,\(\left(x-3\right)\left(3x-1\right)=3x^2-x-9x+3=3x^2-10x+3\)

B2:

1)\(x^2-\left(x+4\right)\left(x-1\right)=x^2-\left(x^2-x+4x-4\right)=x^2-x^2+x-4x+4=-3x+4\)

2)\(x\left(x+2\right)-\left(x-2\right)\left(x+4\right)=x^2+2x-\left(x^2+4x-2x-8\right)\)

\(=x^2+2x-x^2-4x+2x+8=8\)