K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2022

a. Xét \(\Delta ABD\) vuông tại A và \(\Delta HBD\) vuông tại H có: \(\left\{{}\begin{matrix}BD.là.cạnh.chung\\\widehat{ABD}=\widehat{HBD}\left(BD.là.tia.phân.giác.của.\widehat{ABC}\right)\end{matrix}\right.\)

\(\Rightarrow\)\(\Delta ABD\)=\(\Delta HBD\) (c-g) \(\Rightarrow\) DA=DH(đpcm) \(\Rightarrow\)BA=BH(đpcm)

c. Xét tứ giác ABHD có: \(\widehat{DAB}+\widehat{ABH}+\widehat{BHD}+\widehat{HDA}=360^o\)

\(\Leftrightarrow90^o+\widehat{ABH}+90^o+110^o=360^o\)

\(\Rightarrow\widehat{ABC}=\widehat{ABH}=70^o\Rightarrow\widehat{ACB}=90^o-70^o=20^o\) ,\(\widehat{A}=90^o\)

9 tháng 2 2022

thankkk bn nha❤

26 tháng 4 2023

a. Xét \(2\Delta:\Delta ADB\) và \(\Delta HDB\) có:

\(\left\{{}\begin{matrix}\widehat{ABD}=\widehat{HBD}\\BD.chung\end{matrix}\right.\Rightarrow\Delta ADB=\Delta HDB\) (cạnh huyền - góc nhọn)

\(\Rightarrow DA=DH\)

b. Xét \(2\Delta:\Delta KAD\) và \(\Delta CHD\) có:

\(\left\{{}\begin{matrix}\widehat{KDA}=\widehat{CDH}\left(đối.đỉnh\right)\\AD=DH\left(câu.a\right)\end{matrix}\right.\)

\(\Rightarrow\Delta KAD=\Delta CHD\) (cạnh góc vuông - góc nhọn kề)

\(\Rightarrow DK=DC\Rightarrow\Delta KDC.cân\)

c. Ta có DC = DK

Mà \(\Delta KAD\) vuông tại A có cạnh huyền là DK

\(\Rightarrow AD< DK\) hay \(DA< DC\)

a: Xet ΔBAD vuông tại A và ΔBHD vuông tại H co

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

=>DA=DH

b: Xet ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

góc ADK=góc HDC

=>ΔDAK=ΔDHC

=>DK=DC

c: DA=DH

DH<DC

=>DA<DC

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH

b: Ta có: ΔBAD=ΔBHD

nên DA=DH

hay D nằm trên đường trung trực của AH(1)

Ta có: BA=BH

nên B nằm trên đường trung trực của AH(2)

Từ (1) và (2) suy ra BD là đường trung trực của AH

hay BD⊥AH

12 tháng 2 2022

Mình chỉ làm câu c, d thôi nha ( vì câu a, b bạn Nguyễn Lê Phước Thịnh làm rồi)

c) Xét tam giác ECK và tam giác ECA có:

EKC=EAC=90

EC cạnh chung

ECK=ECA ( vì CE là p/g của ABC)

=>Tam giác ECK=Tam giác ECA ( ch-gn)

=>CK=CA( 2 cạnh tương ứng)

Mà AB=HB( chứng minh a)

=>CK+BH=CA+AB

=>CH+KH+BK+HK=AC+AB

=>(BK+KH+CH)+HK=AC+AB

=>BC+HK=AB+AC (ĐPCM)

d) Ta có: \(\left\{{}\begin{matrix}CK=CA\left(theo.c\right)\\BA=BH\left(theo.a\right)\end{matrix}\right.\)=>Tam giác ACK cân tại C và tam giác ABH cân tại B

=>\(\left\{{}\begin{matrix}CAK=CKA=\dfrac{180-ACB}{2}\\BAH=BHA=\dfrac{180-ABC}{2}\end{matrix}\right.\)

Có: BAH+CAK=BAK+HAK+HAC+HAK=BAK+2HAK+HAC=\(\dfrac{180-ABC}{2}+\dfrac{180-ACB}{2}\)=\(\dfrac{360-\left(ABC+ACB\right)}{2}\)

=\(\dfrac{360-90}{2}=135\)

=>BAK+2HAK+HAC=135

Mà BAK+HAC=BAC-HAK=90-HAK

=>90-HAK+2HAK=135

=>90+HAK=135

=>HAK=45

a: Ta có: ΔABC vuông tại A

=>\(AB^2+AC^2=BC^2\)

=>\(AC^2=5^2-3^2=16\)

=>\(AC=\sqrt{16}=4\left(cm\right)\)

Xét ΔBAC có BD là phân giác

nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)

=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)

mà AD+CD=AC=4

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)

=>\(AD=\dfrac{3}{2}=1,5\left(cm\right)\)

b: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có

\(\widehat{HCD}\) chung

Do đó: ΔCHD đồng dạng với ΔCAB

=>\(\dfrac{CH}{CA}=\dfrac{CD}{CB}\)

=>\(CH\cdot CB=CA\cdot CD\)

c: Ta có: AE\(\perp\)BC

DH\(\perp\)BC

Do đó: HD//AE

Xét ΔAEC có HD//AE

nên \(\dfrac{HC}{HE}=\dfrac{CD}{DA}\)

mà \(\dfrac{CD}{DA}=\dfrac{BC}{BA}\)

nên \(\dfrac{HC}{HE}=\dfrac{BC}{BA}\)

d: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

=>BA=BH và DA=DH

Ta có: BA=BH

=>B nằm trên đường trung trực của AH(1)

Ta có: DA=DH

=>D nằm trên đường trung trực của AH(2)

Từ (1),(2) suy ra BD là đường trung trực của AH

=>BD\(\perp\)AH tại O và O là trung điểm của AH

=>OA=OH(3)

Xét ΔCMN có AO//MN

nên \(\dfrac{AO}{MN}=\dfrac{CO}{CM}\left(4\right)\)

Xét ΔCBM có OH//BM

nên \(\dfrac{OH}{BM}=\dfrac{CO}{CM}\left(5\right)\)

Từ (3),(4),(5) suy ra MN=BM

=>M là trung điểm của BN

a) Xét ΔABD và ΔACD có

AB=AC(ΔABC cân tại A)

\(\widehat{BAD}=\widehat{CAD}\)(AD là tia phân giác của \(\widehat{BAC}\))

AD chung

Do đó: ΔABD=ΔACD(c-g-c)

Suy ra: DB=DC(hai cạnh tương ứng)

b) Xét ΔDBH vuông tại H và ΔDCK vuông tại K có 

DB=DC(cmt)

\(\widehat{B}=\widehat{C}\)(hai góc ở đáy của ΔABC cân tại A)

Do đó: ΔDBH=ΔDCK(cạnh huyền-góc nhọn)

Suy ra: DH=DK(hai cạnh tương ứng)

15 tháng 4 2022

help me