K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2016

Điều đơn giản bạn tự suy luận sẽ ra thôi đâu cần cm làm gì

2 tháng 5 2016

xong hết rồi chứng minh gì nữa nếu a>b <=>a/b > 1 vd a = 3, b = 2 a/b =3/2  =1.5 > 1

     Ngược lại ....................

24 tháng 11 2019

Bạn ơi mình nói ngắn gọn thôi 

Quy đồng hai vế với (a+1)(b+1(c+1) phá ngoặc đơn là tìm được đáp án

NV
24 tháng 11 2019

\(a+b+c+2=abc\)

\(\Leftrightarrow\left(a+1\right)\left(b+1\right)+\left(b+1\right)\left(c+1\right)+\left(c+1\right)\left(a+1\right)=\left(a+1\right)\left(b+1\right)\left(c+1\right)\)

\(\Leftrightarrow\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=1\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

a) 

Trên nửa đường tròn đơn vị, lấy điểm M sao cho \(\widehat {xOM} = \alpha \)

Gọi H, K lần lượt là các hình chiếu vuông góc của M trên Ox, Oy.

 

Ta có: tam giác vuông OHM vuông tại H và \(\alpha  = \widehat {xOM}\)

Do đó: \(\sin \alpha  = \frac{{MH}}{{OM}} = MH;\;\cos \alpha  = \frac{{OH}}{{OM}} = OH.\)

\( \Rightarrow {\cos ^2}\alpha  + {\sin ^2}\alpha  = O{H^2} + M{H^2} = O{M^2} = 1\)

b) Ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }}.\\ \Rightarrow \;\tan \alpha .\cot \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }}.\frac{{\cos \alpha }}{{\sin \alpha }} = 1\end{array}\)

c) Với \(\alpha  \ne {90^o}\) ta có:

\(\begin{array}{l}\;\tan \alpha  = \frac{{\sin \alpha }}{{\cos \alpha }};\;\\ \Rightarrow \;1 + {\tan ^2}\alpha  = 1 + \frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\cos }^2}\alpha }} = \frac{1}{{{{\cos }^2}\alpha }}\;\end{array}\)

d) Ta có:

\(\begin{array}{l}\cot \alpha  = \frac{{\cos \alpha }}{{\sin \alpha }};\;\\ \Rightarrow \;1 + {\cot ^2}\alpha  = 1 + \frac{{{{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{{{\sin }^2}\alpha  + {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{1}{{{{\sin }^2}\alpha }}\;\end{array}\)

18 tháng 2 2018

a) \(\frac{x}{3}-\frac{1}{y}=\frac{1}{6}\)

Quy đồng \(\frac{x}{3}\)với \(\frac{1}{6}\). Ta có:

\(\frac{x}{3}=\frac{x.6}{3.6}=\frac{x6}{18}\)

\(\frac{1}{6}=\frac{1.3}{6.3}=\frac{3}{18}\)

\(\Rightarrow\frac{x}{3}-\frac{1}{y}=\frac{1}{6}\Leftrightarrow\frac{x6}{18}-\frac{1}{y}=\frac{3}{18}\)

Quy đồng \(\frac{1}{y}\)với \(\frac{3}{18}\). Ta có:

Đặt mẫu số chung: 18. Ta có: 

\(\frac{1}{y}=\frac{18}{18}\) ( Vì khi quy đồng mẫu số của (1/y) phải là 18. Nên (1/y) = (1.18)/18 = (18/18)   ) 

Vì y là mẫu. Suy ra y = 18

 \(\Rightarrow\frac{x6}{18}-\frac{1}{y}=\frac{3}{18}\Leftrightarrow\frac{x6}{18}-\frac{18}{18}=\frac{3}{18}\)

\(\Leftrightarrow\frac{x6}{18}=\frac{18}{18}+\frac{3}{18}\Leftrightarrow\frac{x6}{18}=\frac{21}{18}\)

\(\Rightarrow x6=21\Rightarrow x=\frac{21}{6}=\frac{7}{2}\) ( và vì x là tử suy ra x = 7)

Vậy .....

b) Ta có: \(\left(3a+11b\right)⋮17\Leftrightarrow\left(5a+17b\right)⋮17\)

\(\Rightarrow\left(a+b\right)⋮17\)

Vì ( a + b) chia hết cho 17

 \(\Rightarrow\left(..a+..b\right)⋮17\). Thế số vào chỗ ". . " Ta có:

\(\left(..a+..b\right)=\left(5a+17b\right)⋮17\left(ĐPCM\right)\)

27 tháng 4 2022

`a) 2 ( a^2 + b^2 ) >= ( a + b )^2`

`<=> 2a^2 + 2b^2 >= a^2 + 2ab + b^2`

`<=> a^2 - 2ab + b^2 >= 0`

`<=> ( a - b )^2 >= 0` (Luôn đúng `AA a,b`)

     `=>` Đẳng thức được c/m

_________________________________________

`b) a^2 + b^2 + c^2 >= ab + bc + ca`

`<=> 2a^2 + 2b^2 + 2c^2 >= 2ab + 2bc + 2ca`

`<=> ( a^2 - 2ab + b^2 ) + ( b^2 - 2bc + c^2 ) + ( c^2 - 2ca + a^2 ) >= 0`

`<=> ( a - b )^2 + ( b - c )^2 + ( c - a )^2 >= 0` (Luôn đúng `AA a,b,c`)

         `=>` Đẳng thức được c/m

\(a^2+b^2+4\ge ab+2\left(a+b\right)\)

\(\Leftrightarrow2a^2+2b^2+8\ge2ab+4\left(a+b\right)\)

\(\Leftrightarrow2a^2+2b^2+8-2ab-4a-4b\ge0\)

\(\Leftrightarrow a^2-2ab+b^2+a^2-4a+4+b^2-4b+4\ge0\)

\(\Leftrightarrow\left(a-b\right)^2+\left(a-2\right)^2+\left(b-2\right)^2\ge0\) (Luôn đúng)

Vậy đẳng thức ban đầu được chứng minh.