Tìm x biết 1/10+1/15+1/21+...+2/x[x+1]=12/25
có khó không
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) đề kiểu gì vậy bạn
b) \(x+\frac{2}{14}=\frac{3}{21}\Leftrightarrow x=0\)
c) \(x+\frac{2}{7}=\frac{1}{2}\Leftrightarrow x=\frac{3}{14}\)
d) \(\frac{12}{15}=\frac{x-5}{10}\Leftrightarrow15x-75=120\Leftrightarrow15x=195\Leftrightarrow x=13\)
\(\Leftrightarrow2\left(\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+...+\dfrac{1}{x\left(x+1\right)}\right)=\dfrac{2010}{2012}\)
\(\Leftrightarrow\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-...+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{2010}{4024}=\dfrac{1005}{2012}\)
=>1/x+1=-251/1006
=>x+1=-1006/251
=>x=-1257/251
\(\Rightarrow\frac{2}{30}+\frac{2}{42}+\frac{2}{56}+...+\frac{2}{x.\left(x+1\right)}=\frac{2}{5.6}+\frac{2}{6.7}+\frac{2}{7.8}+\frac{2}{x.\left(x+1\right)}=2.\left(\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{x.\left(x+1\right)}\right)\)
\(=2.\left(\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}\right)=2.\left(\frac{1}{5}-\frac{1}{x+1}\right)=\frac{2}{5}-\frac{2}{x+1}=\frac{3}{10}\)
=> \(\frac{2}{x+1}\)= \(\frac{1}{10}=\frac{2}{20}\)
=> x +1 = 20 => x = 19
bạn trên sai rồi, nếu đã nhân đôi lên tất cả thì cx phải nhân luôn con cuối chứ
1) 11 - x = 8 - ( -11 )
11 - x = 19
x = 11 - 19
x = -8
2) x - 21 = ( -7 ) - 4
x - 21 = -11
x = ( -11 ) + 21
x = 10
3) 46 - x = -21 + ( -87 )
46 - x = -108
x = 46 - ( -108 )
x = 154
1)11-x=8+11
11-x=19
x=11-19
x=-8
2)Mk ko bt
3)46-x=-108
x=46-(-108)
x=46+108
x=154
4) x-96=443-x-15
x-96=443-15-x
x-96=428-x
x+x=428=96
2x+524
x=524:2
x=262
5) Mk ko bt
Mk chỉ bt 3 câu này thui bạn ak
\(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+....+\frac{2}{x\left(x+1\right)}=\frac{12}{15}\)
=>\(\frac{2}{20}+\frac{2}{30}+\frac{2}{42}+....+\frac{2}{x\left(x+1\right)}=\frac{12}{15}\)
=>\(2.\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{12}{15}\)
=>\(2.\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+....+\frac{1}{x\left(x+1\right)}\right)=\frac{12}{15}\)
=>\(2.\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{12}{15}\)
=>\(2.\left(\frac{1}{4}-\frac{1}{x+1}\right)=\frac{12}{15}\Rightarrow\frac{1}{4}-\frac{1}{x+1}=\frac{12}{15}:2=\frac{2}{5}\Rightarrow\frac{1}{x+1}=\frac{1}{4}-\frac{2}{5}=-\frac{3}{20}\)
=>x=-23/3
a) \(\left(x+\frac{1}{4}-\frac{1}{3}\right):\left(2+\frac{1}{6}-\frac{1}{4}\right)=\frac{7}{46}\)
\(\left(x-\frac{1}{12}\right):\left(2-\frac{1}{12}\right)=\frac{7}{46}\)
\(\left(x-\frac{1}{12}\right):\frac{23}{12}=\frac{7}{46}\)
\(x-\frac{1}{12}=\frac{7}{46}.\frac{23}{12}\)
\(x-\frac{1}{12}=\frac{7}{24}\)
\(x=\frac{7}{24}+\frac{1}{12}\)
\(x=\frac{3}{8}\)
Vậy \(x=\frac{3}{8}\)
b) \(\frac{13}{15}-\left(\frac{13}{21}+x\right).\frac{7}{12}=\frac{7}{10}\)
\(\frac{13}{15}-\left(\frac{13}{21}+x\right)=\frac{7}{10}:\frac{7}{12}\)
\(\frac{13}{15}-\left(\frac{13}{21}+x\right)=\frac{7}{10}.\frac{12}{7}\)
\(\frac{13}{15}-\left(\frac{13}{21}+x\right)=\frac{6}{5}\)
\(\frac{13}{21}+x=\frac{13}{15}-\frac{6}{5}\)
\(\frac{13}{21}+x=\frac{-1}{3}\)
\(x=\frac{-1}{3}-\frac{13}{21}\)
\(x=\frac{-20}{21}\)
Vậy \(x=\frac{-20}{21}\)