trình bày cách giải bài này giúp mình với
Trong mặt phẳng Oxy, phương trình đường phân giác góc nhọn của góc tạo bởi 2 đường thẳng
d1: 3x+4y-3=0
d2: 4x+3y-1=0 là:
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi \(\overrightarrow{n}=\left(a;b\right)\) là 1 vtpt của đường thẳng d' cần tìm
Do d' tạo với d 1 góc bằng 45 độ
\(\Rightarrow cos\left(d;d'\right)=\dfrac{\left|2a+3b\right|}{\sqrt{2^2+3^2}.\sqrt{a^2+b^2}}=\dfrac{\sqrt{2}}{2}\)
\(\Leftrightarrow\sqrt{2}\left|2a+3b\right|=\sqrt{13\left(a^2+b^2\right)}\)
\(\Leftrightarrow2\left(2a+3b\right)^2=13\left(a^2+b^2\right)\)
\(\Leftrightarrow5a^2-5b^2-24ab=0\)
\(\Rightarrow\left[{}\begin{matrix}a=5b\\b=-5a\end{matrix}\right.\) \(\Rightarrow\) chọn \(\left[{}\begin{matrix}\left(a;b\right)=\left(5;1\right)\\\left(a;b\right)=\left(1;-5\right)\end{matrix}\right.\)
Có 2 đường thẳng thỏa mãn:
\(\left[{}\begin{matrix}5\left(x-3\right)+1\left(y-6\right)=0\\1\left(x-3\right)-5\left(y-6\right)=0\end{matrix}\right.\) \(\Leftrightarrow...\)
Cho 2 đường thẳng cắt nhau d 1 : a 1 x + b 1 y + c 1 = 0 v à d 2 : a 2 x + b 2 y + c 2 = 0 .
Khi đó, phương trình đường phân giác tạo bởi 2 đường thẳng là:
a 1 x + b 1 y + c 1 a 1 2 + b 1 2 = ± a 2 x + b 2 y + c 2 a 2 2 + b 2 2
Áp dụng công thức ta có phương trình hai phân giác là:
3 x − 4 y + 1 3 2 + ( − 4 ) 2 = ± x + 3 1 2 + 0 2 ⇔ 3 x − 4 y + 1 5 = ± ( x + 3 ) ⇔ 3 x − 4 y + 1 = ± 5 x + 3 ⇔ 2 x + 4 y + 14 = 0 8 x − 4 y + 16 = 0 ⇔ x + 2 y + 7 = 0 2 x − y + 4 = 0
ĐÁP ÁN C
Gọi M(x;y) là điểm thuộc đường phân giác của góc tạo bởi hai đường thẳng đã cho
+) Ta có:
+) Do điểm M thuộc đường phân giác của góc tạo bởi hai đường thẳng d1 và d2 nên điểm M cách đều hai đường thẳng trên: d( M; d1)= d(M, d2 )
Vậy phương trình 2 đường phân giác của góc tạo bởi hai đường thẳng đã cho là:
-21 x – 77y + 191= 0 và 99x – 27y + 121 =0
Gọi đường thẳng đi qua A là d'.
a) Ta có: \(d'\perp d.\)
\(\Rightarrow\) VTPT của d là VTCP của d'.
Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)
\(\Rightarrow\overrightarrow{u_{d'}}=\left(3;-4\right).\Rightarrow\overrightarrow{n_{d'}}=\left(4;3\right).\)
\(\Rightarrow\) Phương trình đường thẳng d' là:
\(4\left(x-2\right)+3\left(y+1\right)=0.\\ \Leftrightarrow4x+3y-5=0.\)
b) Ta có: \(d'//d.\)
\(\Rightarrow\) VTPT của d là VTPT của d'.
Mà VTPT của d là: \(\overrightarrow{n_d}=\left(3;-4\right).\)
\(\Rightarrow\) \(\overrightarrow{n_{d'}}=\left(3;-4\right).\)
\(\Rightarrow\) Phương trình đường thẳng d' là:
\(3\left(x-2\right)-4\left(y+1\right)=0.\\ \Leftrightarrow3x-4y-10=0.\)
Đáp án B
Ta có: là véc tơ pháp tuyến của d; d’ và
Nên phương tình đường phân giác của góc nhọn là: