12*63=?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
-37.(63 + 12) + 63.(37 - 12)
= -37.63 + (-37).12 + 63.37 - 63.12
= [-37.63 + 63.37] + [-37.12 - 63.12]
= 0 + [-37.12 - 63.12]
= -37.12 - 63.12
= (-37 - 63).12
= -100.12
= -1200
Chọn `A.\sqrt{36}+\sqrt{63}>10`
Vì `\sqrt{63}>\sqrt{16}=4`
`=>\sqrt{36}+\sqrt{63}>6+4=10`
Cần CM: \(\frac{1}{9-a}-\frac{12}{a^2+63}\ge\frac{1}{144}a^2-\frac{1}{16}\) (1)
\(\Leftrightarrow\)\(\frac{a^2+12a-45}{\left(9-a\right)\left(a^2+63\right)}\ge\frac{1}{144}a^2-\frac{1}{16}\)
\(\Leftrightarrow\)\(144\left(a^2+12a-45\right)\ge\left(a-3\right)\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\)
\(\Leftrightarrow\)\(\left(a-3\right)\left[144\left(a+15\right)-\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\right]\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)\left(a^4-6a^3+36a^2-234a+459\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)^2\left(a^3-3a^2+27a+153\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)^2\left[\left(a-3\right)^2\left(a+3\right)+36a+126\right]\ge0\) ( đúng )
Do đó (1) đúng => \(\Sigma_{cyc}\frac{1}{9-a}-\Sigma_{cyc}\frac{12}{a^2+63}\ge\frac{1}{144}\left(a^2+b^2+c^2\right)-\frac{3}{16}=0\)
\(\Rightarrow\)\(\Sigma_{cyc}\frac{12}{a^2+63}\le\Sigma_{cyc}\frac{1}{9-a}\le\Sigma_{cyc}\frac{1}{a+b}\) ( do \(a+b+c\le9\) )
Dấu "=" xảy ra khi a=b=c=3
Ta có: \(\frac{1}{a+b}+\frac{1}{b+c}\ge2\sqrt{\frac{1}{a+b}\frac{1}{b+c}}=2\frac{1}{\sqrt{\left(a+b\right)\left(b+c\right)}}\ge\frac{4}{a+2b+c}\)
Tương tự có: \(\frac{1}{b+c}+\frac{1}{a+c}\ge\frac{4}{a+2c+b}\)
\(\frac{1}{a+b}+\frac{1}{a+c}\ge\frac{4}{b+2a+c}\)
\(\Rightarrow\frac{1}{a+b}+\frac{1}{c+b}+\frac{1}{a+c}\ge2\left(\frac{1}{b+2a+c}+\frac{1}{a+2b+c}+\frac{1}{b+2c+a}\right)\)
Ta CM: \(\frac{1}{b+2a+c}\ge\frac{6}{a^2+63}\). Thật vậy:
\(\frac{1}{b+2a+c}\ge\frac{6}{a^2+63}\)\(\Leftrightarrow a^2+63\ge6b+12a+6c\)\(\Leftrightarrow2a^2+b^2+c^2+36-6b-12a-6c\ge0\)
\(\Leftrightarrow2\left(a-3\right)^2+\left(b-3\right)^2+\left(c-3\right)^2\ge0\) ( luôn đúng)
Dấu '=' xảy ra <=> a=b=c=3
Vậy \(\frac{1}{b+2a+c}+\frac{1}{a+2b+c}+\frac{1}{b+2c+a}\ge\frac{6}{a^2+63}+\frac{6}{b^2+63}+\frac{6}{c^2+63}\)
=> đpcm
3:
a: (a-b+c)-(c-b-a)
=a-b+c-c+b+a
=2a
b: \(-\left(a-b\right)+\left(b-c+a\right)-\left(a+b-c\right)\)
\(=-a+b+b-c+a-a-b+c\)
\(=b-a\)
c: \(-\left(a-b-c\right)-\left(-a+b+c\right)-\left(a-b+c\right)\)
\(=-a+b+c+a-b-c-a+b-c\)
\(=-a+b-c\)
2:
a: \(12-\left(-12\right)=12+12=24\)
b: \(-\left(35-49\right)+\left(27-49\right)=-35+49+27-49\)
=-35+27
=-8
c: \(47-\left(59-63\right)+\left(63-47\right)\)
\(=47-59+63+63-47\)
=126-59
=67
d: \(-\left(-20\right)-\left(-30\right)-70\)
=20+30-70
=50-70
=-20
\(\frac{-63}{108}\)= \(\frac{-7}{12}\)
\(\frac{-33}{-77}\)= \(\frac{3}{7}\)
\(\frac{-5}{10}\)=\(\frac{-1}{2}\)
\(\frac{14}{63}\)=\(\frac{2}{9}\)
\(\frac{-15}{25}\)=\(\frac{-3}{5}\)
\(\frac{-45}{18}\)=\(\frac{-5}{2}\)
\(\frac{12}{15}\)=\(\frac{4}{5}\)
\(\frac{20}{25}\)=\(\frac{4}{5}\)
\(\frac{31}{12}\):Là phân số tối giản
t.i.c.k nha
Ta có : 24 x 18 + 12 x 63 + 12
= 12 x 36 + 12 x 63 + 12 x 1
= 12 x ( 36 + 63 + 1)
= 12 x 100
= 1200
Số cần tìm là :
12 x 63 = 756
Vậy số cần tìm là : 756
12*63=756