cho đường tròn (O) đường kính AB, C là một điểm trên nửa đường tròn (C khác A, C khác B, BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\angle OAC+\angle ODC=90+90=180\Rightarrow OACD\) nội tiếp
b) Xét \(\Delta CDE\) và \(\Delta CBD:\) Ta có: \(\left\{{}\begin{matrix}\angle CDE=\angle CBD\\\angle BCDchung\end{matrix}\right.\)
\(\Rightarrow\Delta CDE\sim\Delta CBD\left(g-g\right)\Rightarrow\dfrac{CD}{CB}=\dfrac{CE}{CD}\Rightarrow CD^2=CB.CE\)
c) BC cắt DF tại G.BD cắt AC tại H
Vì AB là đường kính \(\Rightarrow\angle ADB=90\Rightarrow\Delta ADH\) vuông tại D
có \(CA=CD\) (CA,CD là tiếp tuyến) \(\Rightarrow\) C là trung điểm AH
Vì \(DF\parallel AH\)\(\Rightarrow\left\{{}\begin{matrix}\dfrac{GF}{AC}=\dfrac{BG}{BC}\\\dfrac{GD}{CH}=\dfrac{BG}{BC}\end{matrix}\right.\Rightarrow\dfrac{GF}{AC}=\dfrac{GD}{CH}\)
mà \(CA=CH\Rightarrow GF=GD\Rightarrow\) đpcm
A B C D H E O
a/ Nối A với D ta có
\(\widehat{ADB}=90^o\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow AD\perp BC\)
=> H và D cùng nhìn AC dưới 1 góc vuông => AHDC là tứ giác nội tiếp
b/
Xét tg vuông ACO có
\(\widehat{ACO}+\widehat{AOC}=90^o\)
Ta có \(\widehat{ADH}+\widehat{EDB}=\widehat{ADB}=90^o\)
Xét tứ giác nội tiếp AHDC có
\(\widehat{ACO}=\widehat{ADH}\) (Góc nội tiếp cùng chắn cung AH)
\(\Rightarrow\widehat{AOC}=\widehat{EDB}\)
Xét tam giác EOH và tg EBD có
\(\widehat{BED}\) chung
\(\widehat{AOC}=\widehat{EDB}\)
=> tg EOH đồng dạng với tg EDB (g.g.g)
\(\Rightarrow\dfrac{EH}{EB}=\dfrac{EO}{ED}\Rightarrow EH.ED=EO.EB\)
a) Ta có \(\widehat{ADB}=90^0\) (góc nội tiếp chắn nửa đường tròn) \(\Rightarrow\widehat{ADC}=90^0\)
Tứ giác \(AHDC\) có: \(\widehat{ADC}=\widehat{AHC}=90^0\) mà 2 góc này nội tiếp và chắn cung AC
\(\Rightarrow AHDC\) là tứ giác nội tiếp
b) Tứ giác \(AHDC\) nội tiếp \(\Rightarrow\widehat{ACO}=\widehat{ADE}\) (góc nội tiếp cùng chắn 1 cung)
Ta có: \(\widehat{EOH}=90^0-\widehat{ACO}=90^0-\widehat{ADE}=\widehat{EDB}\)
Xét \(\Delta EOH\) và \(\Delta EDB\) có:
\(\widehat{BED}\) chung
\(\widehat{EOH}=\widehat{EDB}\) (đã chứng minh)
\(\Rightarrow\Delta EOH\sim\Delta EDB\) (g.g) \(\Rightarrow\dfrac{EO}{EH}=\dfrac{ED}{EB}\Rightarrow EH.ED=EO.EB\)
đề thiếu rồi nhé bn