so sánh 1/1.2+1/2.3+1/3.4+..........1/49.50 với 1 giúp mk nha cảm ơn
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
= \(1-\frac{1}{50}
Ta có : 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
= 1 - 1/50 < 1
Nên 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50 < 1
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50
=1-1/2+1/2-1/3+...+1/49-1/50
=1-1/50
=49/50
ta có :9/10=45/50
=>49/50>45/50
=>1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50 > 9/10
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50
= 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
= 1 - 1/50
= 49/50
=> 49/50 > 9/10
=> 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50 > 9/10
Chúc bn có kết quả hc kì II thật tốt nha !!!!!!!!!!!! ^_^
\(S_1=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+....+\frac{1}{48\cdot49}+\frac{1}{49\cdot50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+....+\frac{1}{48}-\frac{1}{49}+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}=\frac{49}{50}\)
\(S_2=\frac{1}{4\cdot7}+\frac{1}{7\cdot10}+\frac{1}{10\cdot13}+....+\frac{1}{94\cdot97}+\frac{1}{97\cdot100}\)
\(3S_2=\frac{3}{4\cdot7}+\frac{3}{7\cdot10}+\frac{3}{10\cdot13}+....+\frac{3}{94\cdot97}+\frac{3}{97\cdot100}\)
\(=\frac{1}{4}-\frac{1}{7}+\frac{1}{7}-\frac{1}{10}+\frac{1}{10}-\frac{1}{13}+....+\frac{1}{97}-\frac{1}{100}\)
\(=\frac{1}{4}-\frac{1}{100}=\frac{6}{25}\)
=> \(S_2=\frac{6}{25}:3=\frac{2}{25}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}< 1\) (đpcm)
ta có :
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(=1-\frac{1}{50}\)
\(=\frac{49}{50}< 1\)
A = \(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\)
= \(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
=\(1-\frac{1}{50}\)
Vì \(1-\frac{1}{50}< 1\)nên A < 1
B = \(\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)
=\(\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)
=\(\frac{1}{2}-\frac{1}{100}\)
Vì \(\frac{1}{2}-\frac{1}{100}< \frac{1}{2}\)nên B < \(\frac{1}{2}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{49.50}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}\)
\(\Rightarrow A< 1\)
\(B=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{99.100}\)
\(B=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{99}-\frac{1}{100}\)
\(B=\frac{1}{2}-\frac{1}{100}\)
\(\Rightarrow B< \frac{1}{2}\)
\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2003.2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2003}{2004}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2003\cdot2004}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-...-\frac{1}{2003}+\frac{1}{2003}-\frac{1}{2004}\)
\(=1-\frac{1}{2004}\)
\(=\frac{2003}{2004}\)
\(M=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{49.50}\)
\(M=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+.....+\frac{1}{49}-\frac{1}{50}\)
\(M=\frac{1}{1}-\left(-\frac{1}{2}+\frac{1}{2}\right)+\left(-\frac{1}{3}+\frac{1}{3}\right)+\left(-\frac{1}{4}+\frac{1}{4}\right)+........+\left(-\frac{1}{49}+\frac{1}{49}\right)-\frac{1}{50}\)
\(M=\frac{1}{1}-0+0+0+0+0+......+0+0-\frac{1}{50}\)
\(M=\frac{1}{1}-\frac{1}{50}=\frac{49}{50}\)
Vì \(\frac{49}{50}<1\) nên \(S<1\)
đặt A=1/1.2+1/2.3+1/3.4+..........1/49.50
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\)
\(A=1-\frac{1}{50}<1\)
vậy A<1
1/1.2 + 1/2.3 + 1/3.4 + ... + 1/49.50
1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/49 - 1/50
1 - 1/50 < 1