K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 4 2015

xét tam giác EMD và tam giác MFP, ta có 

 PM=DM (gt)

EM=MF (gt)

góc DME = góc FMP ( đối đỉnh )

=> tam giác DEM = tam giác PFM ( c.g.c)

=> góc EDM = góc FMP ( cạnh tương ứng)

mà 2 góc này ở vị trí so le trong => DE song song với  FP

b , vì tam giác EDM có góc E = 90 độ 

=> góc E > góc EFD => DF > DE

mà  DE = FP => DF > FP

 => góc DPF > góc FDP

mà  góc DPF = góc EDM ( vì tam giác DEM = tam giác PFM)

=> góc EDM> góc MDE

19 tháng 4 2015

vì tam giác DEM = tam giác PFM => EM = MF (1)

xét tam giác IMF có 

góc MIF = 90 độ 

=> góc MIF > góc IFM 

=> MF> IM (2)

 từ 1 , 2 => EM > MI

 

24 tháng 12 2020

a) Xét △DEM và △KFM có

DM=KM(giả thiết)

góc DME=góc KMF(2 góc đối đỉnh)

EM=MF(Vì M là trung điểm của EF)

=>△DEM =△KFM(c-g-c)

=> góc MDE=góc MKF (2 góc tương ứng)

hay góc EDK= góc EKD mà 2 góc này là 2 góc so le trong bằng nhau của đường thẳng DK cắt 2 đường thẳng DE và KF

=>DE//KF

b) ta có DH⊥EF hay DP⊥EF => góc DHE =góc PHE =90 độ

Xét △DHE (góc DHE=90 độ)△PHE(góc PHE=90 độ) có

HD=HP

HE là cạnh chung

=>   △DHE= △PHE(2 cạnh góc vuông)

=> góc DEM=góc PEM

=> EH là tia phân giác của góc DEP 

   hay EF là tia phân giác của góc DEP 

vậy EF là tia phân giác của góc DEP 

 

 

 

 

 

29 tháng 12 2021

a: Xét ΔDEM và ΔDFM có

DE=DF

DM chung

EM=FM

Do đó: ΔDEM=ΔDFM

30 tháng 12 2017

Bạn tự vẽ hình nhé.

a) Xét tam giác AMB và tam giác DMC có: MB = MC (gt)   ;   góc AMB = góc DMC (2 góc đối đỉnh)    ; AM = MD (gt)

=> tam giác AMB = tam giác DMC (c.g.c)        (đpcm)

b) Vì AH vuông góc BC tại H (gt) (*) nên góc AHM = góc EHM = 90o (định nghĩa).

Xét tam giác HMA và tam giác HME có: chung HM     ;      góc AHM = góc EHM (cmt)       ;      HA = HE (gt)

=>  tam giác HMA = tam giác HME (c.g.c)      (1)

=> MA = ME (2 cạnh tương ứng) mà MA = MD (gt) nên ME = MD.

c) Vì ME = MD nên tam giác MDE cân tại M. => góc MED = góc MDE (t/c)       (2)

Từ (1) => góc MAH = góc MEH (3)

Từ (2) và (3) => góc DEA = góc DAE + góc ADE => góc DEA = 90

=> DE vuông góc AH.  (**)

Từ (*) và (**) => DE // BC

                                                                     

a: Xét ΔDEM và ΔDFM có

DE=DF

EM=FM

DM chung

Do đó: ΔDEM=ΔDFM

b: Ta có: ΔDEF cân tại D

mà DM là đường trung tuyến

nên DM là đường cao

c: Xét tứ giác DENF có 

M là trung điểm của DN

M là trung điểm của FE

Do đó: DENF là hình bình hành

Suy ra: DE//FN

a: Xét tứ giác ABDC có 

M là trung điểm của BC

M là trung điểm của AD

Do đó: ABDC là hình bình hành

Suy ra: AB=DC