Cho B= 1/2(n-1)^2+3. Tìm số nguyên n để B có GTLN
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
B=1/(2.(n-1)^2 +3)
Mà: (n-1)^2 > hoặc =0 <=>2(n-1)^2 > hoặc = 0 (dấu = xảy ra khi n=1)
Vậy ta dễ dàng suy ra 2(n-1)^2 +3 lớn hơn hặc =3
Để B đạt g trị lớn nhất thì mẫu phải đạt g trị nhỏ nhất, vậy Min 2(n-1)^2 +3 =3
Vậy ta có với n=1 thì B đạt giá trị nhỏ nhất và giá trị đó =1/3
Để \(B=\frac{1}{2\left(n-1\right)^2+3}\) đạt GTLN <=> \(2\left(n-1\right)^2+3\) đạt GTNN
Vì \(\left(n-1\right)^2\ge0\forall n\)
\(\Rightarrow2\left(n-1\right)^2\ge0\forall n\)
\(\Rightarrow2\left(n-1\right)^2+3\ge3\forall n\) có GTNN là 3
Dấu "=" xảy ra <=> \(2\left(n-1\right)^2=0\Rightarrow n=1\)
\(\Rightarrow B_{max}=\frac{1}{3}\) tại x = 1
De B lon nhat
=> 2(n-1)2+3 nho nhat
Vi 2(n-1)2\(\ge\)0 => (n-1)2\(\ge0\)=> \(n\ge1\)
=> 2(n-1)2+3\(\ge3\)
=> Min B =3 khi n=1
Ta có: A= (n+1)/(n-2)=(n-2+3)/(n-2)=(n-2)/(n-2) +3/(n-2)= 1+3/(n-2)
a) để A là số nguyên thì n-2 phải là ước của 3
=> n-2={-3; -1; 1; 3}
=> n={-1; 1; 3; 5}
b) Để A đạt giá trị lớn nhất thì 3/(n-2) đạt giá trị dương lớn nhất => n-2 phải đạt giá trị dương nhỏ nhất => n-2=1=> n=3
Khi đó GTLN của A là: 1+3=4
....
a) \(n\in\left(-1,1,3,5\right)\)thì A có giá trị nguyên
b) Ko hiểu
***
A=n+1n−2n+1n−2
a. để B là phân số thì n-2 khác 0 => n khác 2
b.A=n+1n−2n+1n−2= n−2+3n−2n−2+3n−2= n−2n−2n−2n−2+3n−23n−2=1+3n−23n−2
để B nguyên khi n-2 là ước của 3
ta có ước 3= (-1;1;3;-3)
nên n-2=1=> n=3
n-2=-1=> n=1
n-2=3=> n=5
n-2=-3=> n=-1
vậy để A nguyên thì n=(-1;1;3;5)
a, \(A=\frac{n+1}{n-2}\inℤ\Leftrightarrow n+1⋮n-2\)
\(\Rightarrow n-2+3⋮n-2\)
\(n-2⋮n-2\)
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)\)
\(n\inℤ\Rightarrow n-2\inℤ\)
\(\Rightarrow n-2\in\left\{-1;1;-3;3\right\}\)
\(\Rightarrow n\in\left\{1;3;-1;5\right\}\)
b, \(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
để A lớn nhất thì \(\frac{3}{n-2}\) lớn nhất
\(\Rightarrow n-2\) là số nguyên dương nhỏ nhất
\(\Rightarrow n-2=1\)
\(\Rightarrow n=3\)
vậy n = 3 và \(A_{max}=1+\frac{3}{1}=4\)
\(a)\) Ta có :
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=\frac{n-2}{n-2}+\frac{3}{n-2}=1+\frac{3}{n-2}\)
Để \(A\inℤ\) thì \(3⋮\left(n-2\right)\)\(\Rightarrow\)\(\left(n-2\right)\inƯ\left(3\right)\)
Mà \(Ư\left(3\right)=\left\{1;-1;3;-3\right\}\)
Suy ra :
\(n-2\) | \(1\) | \(-1\) | \(3\) | \(-3\) |
\(n\) | \(3\) | \(1\) | \(5\) | \(-1\) |
Vậy \(n\in\left\{-1;1;3;5\right\}\) thì A là số nguyên
\(b)\) Ta có :
\(A=\frac{n+1}{n-2}=1+\frac{3}{n-2}\) ( như câu a )
Để A đạt GTLN thì \(\frac{3}{n-2}\) phải đạt GTLN hay \(n-2>0\) và đạt GTNN
\(\Rightarrow\)\(n-2=1\)
\(\Rightarrow\)\(n=3\)
Suy ra : \(A=\frac{3+1}{3-2}=\frac{4}{1}=4\)
Vậy \(A_{max}=4\) khi \(n=3\)
Chúc bạn học tốt ~