\(\frac{2n+5}{3n-1}\) Tim n để biểu thức đó là số tự nhiên biết n thuôc số tập hợp số tự nhiên
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = \(\frac{2n+9}{n+2}\)+ \(\frac{5n+17}{n+2}\)-\(\frac{3n}{n+2}\)
B= \(\frac{2n+9+5n+17-3n}{n+2}\)
B= \(\frac{\left(2n+5n-3n\right)+9+17}{n+2}\)
B= \(\frac{4n+9+17}{n+2}\)= \(\frac{4n+26}{n+2}\)
Để biểu thức B là số tự nhiên thì ( 4n+26) \(⋮\)n+2
=> n+2 \(⋮\)n+2
=> (4n+26) - 4(n+2)\(⋮\)n+2
=> 4n+26 - 4n - 8 \(⋮\)n+2
=> 18 \(⋮\)n+2
=> n+2 \(\in\)Ư(18)={1; 2; 9; 3; 6; 18; -1; -2; -9; -3; -6; -18}
=> N\(\in\){ -1; 0; 7; 1; 4; 16; -3; -4; -5; -11; -20; -8}
Vậy...
Ta có \(B=\frac{2n+2+5n+17-3n}{n+2}=\frac{\left(2n+5n-3n\right)+\left(2+17\right)}{n+2}\)
\(=\frac{4n+19}{n+2}=\frac{4n+8+11}{n+2}=\frac{4n+8}{n+2}+\frac{11}{n+2}=4+\frac{11}{n+2}\)
Để B là số tự nhiên \(\Leftrightarrow\frac{11}{n+2}\) là số tự nhiên
\(\Rightarrow\) n + 2 \(\in\) Ư(11) . Vì n là số tự nhiên \(\Leftrightarrow\) n + 2 \(\in\) {1 ; 11}
\(\Leftrightarrow\) n = 9
Ta có: \(\frac{2n+2}{2+n}+\frac{5n+17}{2+n}-\frac{3n}{2+n}=\frac{2n+2+5n+17-3n}{2+n}=\frac{\left(2n+5n-3n\right)+\left(2+17\right)}{2+n}=\frac{4n+19}{2+n}\)
Để B là số tự nhiên thì 4n+19 : 2+n
=> 4*(n+2)-11:2+n
=> 11:2+n hay 2+n thuộc Ư(11)={1;11}
=> n =9.
Vậy để B có giá trị là số nguyên thì n=9
(lưu ý: dấu : tức là chia hết cho)
Chúc bạn học tốt!^_^
Giả sử E là số tự nhiên
Biến đổi E ta có :
\(E=\frac{3n^2}{2n^2+n-1}+\frac{1}{n+1}=\frac{3n^2}{\left(n+1\right)\left(2n-1\right)}+\frac{2n-1}{\left(n+1\right)\left(2n-1\right)}=\frac{3n^2+2n-1}{\left(n+1\right)\left(2n-1\right)}\)
\(=\frac{\left(n+1\right)\left(3n-1\right)}{\left(n+1\right)\left(2n-1\right)}=\frac{3n-1}{2n-1}\)
Do E là số tự nhiên \(\Rightarrow\left(3n-1\right)⋮\left(2n-1\right)\)
\(\Leftrightarrow2\left(3n-1\right)⋮\left(2n-1\right)\Rightarrow\left[2\left(3n-1\right)-3\left(2n-1\right)\right]⋮2n-1\)
\(\Leftrightarrow\left(6n-2-6n+3\right)⋮\left(2n-1\right)\Leftrightarrow1⋮\left(2n-1\right)\)
\(\Rightarrow2n-1\inƯ\left(1\right)=\left\{\pm1\right\}\)
Xét \(2n-1=1\Rightarrow n=1\left(KTM:n>1;\text{loại}\right)\)
Xét \(2n-1=-1\Rightarrow n=0\left(KTM:n>1;\text{loại}\right)\)
Vậy ko có số tự nhiên n > 1 nào để \(\left(3n-1\right)⋮\left(2n-1\right)\) hay 3n - 1 ko chia hết cho 2n - 1
=> điều giả sử là sai hay E ko thể là số tự nhiên (đpcm)
Đề bài sai nha!
\(B=\frac{4n+2}{n+2}=\frac{4n+8-6}{n+2}\)
\(=4-\frac{6}{n+2}\)
Để B là stn thì 6/n+2 là stn.
=> 6 chia hết cho n+2
=> n+2 thuộc Ư(6)
......................(tự làm nhé)...........................
4 số thuộc L: 1,3,5,7 (nói chung mấy số lẻ)
2 số ko thuộc L: 0,2 (nói chung mấy số chẵn)
Bài 2:
a) Ta có: \(A=\dfrac{4}{n-1}+\dfrac{6}{n-1}-\dfrac{3}{n-1}\)
\(=\dfrac{4+6-3}{n-1}\)
\(=\dfrac{7}{n-1}\)
Để A là số tự nhiên thì \(7⋮n-1\)
\(\Leftrightarrow n-1\inƯ\left(7\right)\)
\(\Leftrightarrow n-1\in\left\{1;7\right\}\)
hay \(n\in\left\{2;8\right\}\)
Vậy: \(n\in\left\{2;8\right\}\)
ta có B=2n+9/n+2-3n+5n+1/n+2=4n+10/n+2 Để B là STN thì 4n+10⋮n+2 4n+8+2⋮n+2 4n+8⋮n+2 ⇒2⋮n+2 n+2∈Ư(2) Ư(2)={1;2} Vậy n=0