so sánh phân số sau bằng cách nhanh nhất 2016/2017 và 2017/2018
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2016}{2017}=\frac{2017}{2017}-\frac{1}{2017}=1-\frac{1}{2017}\)
\(\frac{2017}{2018}=\frac{2018}{2018}-\frac{1}{2018}=1-\frac{1}{2018}\)
Ta có : \(\frac{1}{2017}>\frac{1}{2018}\)
=>\(1-\frac{1}{2017}< 1-\frac{1}{2018}\)
=>\(\frac{2016}{2017}< \frac{2017}{2018}\)
\(\dfrac{2017}{2016}\) và \(\dfrac{2017}{2018}\)
C1: Đây là 2 phân số cùng mẫu:
Vì 2016 < 2018 nên \(\dfrac{2017}{2016}>\dfrac{2017}{2018}\)
C2: So sánh với 1.
Vì \(\dfrac{2017}{2016}>1>\dfrac{2017}{2018}\) nên \(\dfrac{2017}{2016}>\dfrac{2017}{2018}\)
Ở trên là 2 phương pháp giải thuận tiện nhất.
C1 là 2 phân số cùng tử số mới đúng nhé, ghi nhầm. Nhưng còn cách so sánh thì đúng cả rồi ạ.
không quy đồng phân số hãy so sánh 2 phân số sau: 2017/ 2018 và 2016/2017
Ta so sánh 1/2018 và 1/2017
1/2018<1/2017
=> 2017/2018>2016/2017
ta thấy : 1-2015/2016=1/2016
1-2017/2018=1/2018
phân số nào có phần bù lớn hơn thì phân số đó bé hơn và ngược lại
vì 1/2016>1/2018 nên 2015/2016<2017/2018
Ta sẽ so sánh phần bù
2016-2015/2016 và 2018-2017/2018=1/2016 và 1/2018
Vì 1/2016>1/2018 nên suy ra 2017/2018>2015/2016
Công thức : Phân số nào có phần bù lớn hơn thì phân số đó lớn hơn
h cho mình nha $ ~~
\(A=\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}\)
\(B=\frac{2015+2016+2017}{2016+2017+2018}\)
\(B=\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
Ta có:
\(\frac{2015}{2016}>\frac{2015}{2016+2017+2018}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017+2018}\)
\(\frac{2017}{2018}>\frac{2017}{2016+2017+2018}\)
Cộng vế theo vế, ta có:
\(\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015}{2016+2017+2018}+\frac{2016}{2016+2017+2018}+\frac{2017}{2016+2017+2018}\)
\(hay\frac{2015}{2016}+\frac{2016}{2017}+\frac{2017}{2018}>\frac{2015+2016+2017}{2016+2017+2018}\)
\(\Rightarrow A>B\)
Vậy A > B