K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2021

\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)

Mà để A nguyên thì \(\frac{3}{n-2}\)nguyên

\(\Rightarrow3⋮n-2\)

\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm3;\pm1\right\}\Leftrightarrow n\in\left\{\pm1;3;5\right\}\)

Vậy ......

5 tháng 5 2021

hihi mik chẳng hiểu gì cả cậu có thể giải thích dễ hiểu hơn ko

26 tháng 12 2016

Bạn tự phân tích nhân tử cái biểu thức A thành: 

\(A=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)

a) \(n^2\ge0\Rightarrow n^2+1\ge1>0\)

\(A=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)=0\)<=> n-1=0 hoặc n=0 hoặc n+1=0

<=>n=1 hoặc n=0 hoặc n=-1

Vậy A=0 khi \(n\in\left\{-1;0;1\right\}\)

b) Dễ thấy (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp nên trong tích này có ít nhất 1 thừa số chia hết chia hết cho 2 và 1 thừa số chia hết cho 3 (1)

Xét:

  • \(n=5k\left(k\in Z\right)\) =>\(A=\left(5k-1\right)5k\left(5k+1\right)\left(25k^2+1\right)⋮5\)
  • \(n=5k+1\)

=>\(A=\left(5k+1-1\right)\left(5k+1\right)\left(5k+1+1\right)\left[\left(5k+1\right)^2+1\right]\)

\(=5k\left(5k+1\right)\left(5k+2\right)\left[\left(5k+1\right)^2+1\right]⋮5\)

  • \(n=5k+2\)

=>\(A=\left(5k+2-1\right)\left(5k+2\right)\left(5k+2+1\right)\left[\left(5k+2\right)^2+1\right]\)

\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)\left(25k^2+20k+4+1\right)\)

\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)\left(25k^2+20k+5\right)\)

\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)5\left(5k^2+4k+1\right)⋮5\)

  • n = 5k + 3

=>\(A=\left(5k+3-1\right)\left(5k+3\right)\left(5k+3+1\right)\left[\left(5k+3\right)^2+1\right]\)

\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)\left(25k^2+30k+9+1\right)\)

\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)\left(25k^2+30k+10\right)\)

\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)5\left(5k^2+6k+2\right)⋮5\)

  • n = 5k + 4

=>\(A=\left(5k+4-1\right)\left(5k+4\right)\left(5k+4+1\right)\left[\left(5k+4\right)^2+1\right]\)

\(=\left(5k+3\right)\left(5k+4\right)\left(5k+5\right)\left[\left(5k+4\right)^2+1\right]\)

\(=\left(5k+3\right)\left(5k+4\right)5\left(k+1\right)\left[\left(5k+4\right)^2+1\right]⋮5\)

Vậy A chia hết cho 5 với mọi n thuộc Z (2)

Từ (1) và (2) và 2;3;5 là các số nguyên tố đôi một cùng nhau => A chia hết cho 2.3.5=30 (đpcm)

8 tháng 1 2017

cảm ơn ạ