tìm giá trị của n thuộc N biêt a mũ n bằng 1̣̣̣ a không bằng 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n+1}{n-2}=\frac{n-2+3}{n-2}=1+\frac{3}{n-2}\)
Mà để A nguyên thì \(\frac{3}{n-2}\)nguyên
\(\Rightarrow3⋮n-2\)
\(\Rightarrow n-2\inƯ\left(3\right)=\left\{\pm3;\pm1\right\}\Leftrightarrow n\in\left\{\pm1;3;5\right\}\)
Vậy ......
hihi mik chẳng hiểu gì cả cậu có thể giải thích dễ hiểu hơn ko
Bạn tự phân tích nhân tử cái biểu thức A thành:
\(A=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)\)
a) \(n^2\ge0\Rightarrow n^2+1\ge1>0\)
\(A=\left(n-1\right)n\left(n+1\right)\left(n^2+1\right)=0\)<=> n-1=0 hoặc n=0 hoặc n+1=0
<=>n=1 hoặc n=0 hoặc n=-1
Vậy A=0 khi \(n\in\left\{-1;0;1\right\}\)
b) Dễ thấy (n-1)n(n+1) là tích của 3 số tự nhiên liên tiếp nên trong tích này có ít nhất 1 thừa số chia hết chia hết cho 2 và 1 thừa số chia hết cho 3 (1)
Xét:
=>\(A=\left(5k+1-1\right)\left(5k+1\right)\left(5k+1+1\right)\left[\left(5k+1\right)^2+1\right]\)
\(=5k\left(5k+1\right)\left(5k+2\right)\left[\left(5k+1\right)^2+1\right]⋮5\)
=>\(A=\left(5k+2-1\right)\left(5k+2\right)\left(5k+2+1\right)\left[\left(5k+2\right)^2+1\right]\)
\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)\left(25k^2+20k+4+1\right)\)
\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)\left(25k^2+20k+5\right)\)
\(=\left(5k+1\right)\left(5k+2\right)\left(5k+3\right)5\left(5k^2+4k+1\right)⋮5\)
=>\(A=\left(5k+3-1\right)\left(5k+3\right)\left(5k+3+1\right)\left[\left(5k+3\right)^2+1\right]\)
\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)\left(25k^2+30k+9+1\right)\)
\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)\left(25k^2+30k+10\right)\)
\(=\left(5k+2\right)\left(5k+3\right)\left(5k+4\right)5\left(5k^2+6k+2\right)⋮5\)
=>\(A=\left(5k+4-1\right)\left(5k+4\right)\left(5k+4+1\right)\left[\left(5k+4\right)^2+1\right]\)
\(=\left(5k+3\right)\left(5k+4\right)\left(5k+5\right)\left[\left(5k+4\right)^2+1\right]\)
\(=\left(5k+3\right)\left(5k+4\right)5\left(k+1\right)\left[\left(5k+4\right)^2+1\right]⋮5\)
Vậy A chia hết cho 5 với mọi n thuộc Z (2)
Từ (1) và (2) và 2;3;5 là các số nguyên tố đôi một cùng nhau => A chia hết cho 2.3.5=30 (đpcm)