K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

 Cho tam giác ABC cân tại A ( góc A < 90o ), vẽ BD vuông góc với AC và CE vuông góc với AB. Gọi H là giao điểm của BD và CE.                                                                        a. Chứng minh : Tam giác ABD = tam giác ACE                                                                  b.  Chứng minh : Tam giác AED cân                                                                                                  c. Chứng minh: AH là...
Đọc tiếp

 Cho tam giác ABC cân tại A ( góc A < 90), vẽ BD vuông góc với AC và CE vuông góc với AB. Gọi H là giao điểm của BD và CE.                                                                        

a. Chứng minh : Tam giác ABD = tam giác ACE                                                                  b.  Chứng minh : Tam giác AED cân                                                                                                  c. Chứng minh: AH là đường trung trực của ED              

d. Trên tia đối của tia DB lấy điểm K sao cho DK = DB.Chứng minh: Góc ECB = góc DKC

 

M.n giúp giùm với. Mơn mấy bb*  làm ơn giúo giùm đi mà                                           

 

 

 

 

 

 

 

 

2
30 tháng 4 2016

Câu hỏi tương tự

30 tháng 4 2016

a. Xét tam giác ABD và tam giác ACE có:

-AEC=ADB=90 (gt)

-AB=AC (2 cạnh bên tam giác cân ABC)

-A là góc chung

=> tam giác ABD = tam giác ACE (g.c.g) (đpcm)

b.*Vì tam giác ABD = tam giác ACE (câu a)

=> BH=CH (2 cạnh tương ứng)

*Xét tam giác EHB và tam giác DHC có:

-BEH=CDH=90 (gt)

-BH=CH (CM trên)

-EHB=DHC (đối đỉnh)

=> tam giác EHB = tam giác DHC (c.huyền-g.nhọn)

=>EB=DC (2 cạnh tương ứng)

*Ta có: AB=AE+EB

        và AC=AD+DC

mà AB=AC (2 cạnh bên tam giác cân ABC) 

 và EB=DC (CM trên)

=>AE=AD

=> Tam giác ADE cân tại A (đpcm)

c. Vì AE=AD (CM trên)

    và HE=HD (CM trên)

=> AH là đường trung trực của ED (đpcm)

d. *Xét tam giác DKC và tam giác DBC có:

-BDC=KDC=90 (gt)

-BD=KD (gt)

-DC là cạnh chung

=>tam giác DKC = tam giác DBC (c.g.c)

=> DBC=DKC (2 góc tương ứng) (1)

*Vì BH=CH (câu b)

=> tam giác HBC cân tại H

=>DBC=ECB (2 góc ở đáy tam giác cân) (2)

*Từ (1) và (2) => ECB=DKC (đpcm)

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE
Suy ra; BD=CE

b: Xét ΔAEH vuông tại E và ΔADH vuông tại D có

AH chung

AE=AD

Do đó: ΔAEH=ΔADH

Suy ra: \(\widehat{EAH}=\widehat{DAH}\)

hay AH là tia phân giác của góc BAC

c: Xét ΔABC cso AE/AB=AD/AC

nên DE//BC

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có 

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

Suy ra: BD=CE

b: Xét ΔAED có AE=AD

nên ΔAED cân tại A

c: Xét ΔEBI vuông tại E và ΔDCI vuông tại D có 

EB=DC

\(\widehat{EBI}=\widehat{DCI}\)

Do đó; ΔEBI=ΔDCI

Suy ra: IB=IC

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc BAC

26 tháng 1 2022

Mình cảm ơn cậu nhé

a: Xét ΔABD vuông tại D và ΔACE vuông tại E có

AB=AC

\(\widehat{BAD}\) chung

Do đó: ΔABD=ΔACE

b: Xét ΔAMH có 

AE là đường cao

AE là đường trung tuyến

Do đó: ΔAMH cân tại A

hay AM=AH(1)

c: Xét ΔANH có

AD là đường cao

AD là đường trung tuyến

Do đó: ΔANH cân tại A

hay AH=AN(2)

Từ (1) và (2) suy ra AM=AN

hay ΔAMN cân tại A

3 tháng 3 2018

a ) Xét tam giác ABD và tam giác ACE có : 

AB = AC ( tam giác ABC cân ) 

Góc BAC chung 

ADB = AEC (  = 90 độ ) 

=> tam giác ABD = tam giác ACE ( cạnh huyền góc nhọn ) 

=>  AD = AE 

Xét tam giác AEH và tam giác ADH có : 

AE = AD  

AEH = ADH ( = 90 độ ) 

AH chung 

=> tam giác AEH = tam giác ADH (  ch cgv ) 
=>  góc EAH = góc DAH 

hay góc BAI = góc CAI 
Xét tam giác BAI và tam giác CAI có : 

AB = AC 

góc BAI  = góc CAI 

AI chung

=> tam giác BAI = tam giác CAI 

=> AIB = AIC 

MÀ AIB + AIC = 180 độ ( kề bù ) 

=> AI vuông góc BC

hay AH vuông góc BC 

3 tháng 3 2018

giúp mk với ná

a: Xét ΔADB vuông tại D và ΔAEC vuông tại E có

AB=AC

góc A chung

Do đó; ΔADB=ΔAEC

=>AD=AE
b: Xét ΔABC có AE/AB=AD/AC

nên ED//BC

c: Xét ΔIBC có góc IBC=góc ICB

nên ΔiBC cân tại I

=>IB=IC

d: AB=AC

IB=IC

=>AI là trung trực của BC

=>AI vuông góc với BC

27 tháng 2 2022

Xét tam giác vuông AEC và tam giác vuông ADB,có:

Góc A: chung

AB=AC ( ABC cân )

Vậy tam giác vuông AEC và tam giác vuông ADB ( ch.gn )

=> BD=CE ( 2 cạnh tương ứng )

b. bạn xem lại đề nhé

27 tháng 2 2022

IH vuông góc vs BC I chỗ nào

28 tháng 1 2018

a)   Xét 2 tam giác vuông  \(\Delta EBC\)và      \(\Delta DCB\)có:

      \(BC:\)cạnh chung

      \(\widehat{EBC}=\widehat{DCB}\)  

suy ra:   \(\Delta EBC=\Delta DCB\)    (ch_gn)

\(\Rightarrow\)\(BD=EC\)   (cạnh tương ứng)

b)    \(\Delta ABC\)có   các đường cao  \(BD,EC\)cắt nhau tại   \(H\)

\(\Rightarrow\)\(H\)là trực tâm của   \(\Delta ABC\)

\(\Rightarrow\)\(AH\)là đường cao của   \(\Delta ABC\)

\(\Rightarrow\)\(AH\perp BC\)

c)   \(\Delta ABC\)cân tại   A    có  AH  là đường cao

nên  AH  đồng thời là đường phân giác

\(\Rightarrow\)\(\widehat{EAH}=\widehat{DAH}\)  (đpcm)