K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

\(x^2+2x^2y^2+2y^2-x^2y^2-2x^2-2=0\)

\(\left(2x^2y^2-x^2y^2\right)+2y^2-\left(2x^2-x^2\right)-2=0\)

\(x^2y^2+2y^2-x^2-2=0\)

\(y^2\left(x^2+2\right)-\left(x^2+2\right)=0\)

\(\left(y^2-1\right)\left(x^2+2\right)=0\)

Thật sự xin lỗi nhưng đến đây mình không biết phải làm sao nữa. Sorry nha!!!!!!!!! Nhưng hình như là: y = 1 hoặc y = -1 còn x thuộc R thì phải!!!

       

30 tháng 4 2016

Mih làm tiếp nhé :

( y2 - 1 ) ( x2 + 2 ) 

TH1 

  • y2 - 1 = 0 =) y2 = 1 =) y= +- 1
  • x2 + 2 = 0 =) x2 = -2 =) ko thỏa mãn

TH2 Vì x2+2 ko thõa mãn x mà ( y2 - 1 ) = 0

=) x \(\in\) |R

Vậy y = +- 1 

        x \(\in\) |R

AH
Akai Haruma
Giáo viên
16 tháng 7 2021

Bạn vui lòng viết đề đầy đủ, và gõ bằng công thức toán để được hỗ trợ tốt hơn.

12 tháng 5 2024

đề theo mik nhìn 

25 tháng 4 2017

\(x^2+2x^2y^2+2y^2-\left(x^2y^2+2x^2\right)-2=0\)

\(\Leftrightarrow x^2+2x^2y^2+2y^2-x^2y^2-2x^2-2=0\)

\(\Leftrightarrow x^2y^2-x^2+2y^2-2=0\)

\(\Leftrightarrow\left(x^2y^2-x^2\right)+\left(2y^2-2\right)=0\)

\(\Leftrightarrow x^2\left(y^2-1\right)+2\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(y^2-1\right)=0\)

\(\Leftrightarrow\left(x^2+2\right)\left(y-1\right)\left(y+1\right)=0\)

Dễ thấy: \(x^2+2\ge2>0\forall x\) (vô nghiệm)

\(\Rightarrow\left[{}\begin{matrix}y-1=0\\y+1=0\end{matrix}\right.\)\(\Rightarrow\left[{}\begin{matrix}y=1\\y=-1\end{matrix}\right.\)

4 tháng 5 2024

đúng lúc mình đang cần cảm ơn anh zai

 

AH
Akai Haruma
Giáo viên
27 tháng 8 2023

Lời giải:
$x^2+2y^2+x^2y^2-10xy+16=0$

$\Leftrightarrow (x^2+y^2-2xy)+(x^2y^2-8xy+16)+y^2=0$

$\Leftrightarrow (x-y)^2+(xy-4)^2+y^2=0$

Vì $(x-y)^2\geq 0; (xy-4)^2\geq 0; y^2\geq 0$ với mọi $x,y$

$\Rightarrow$ để tổng của chúng bằng $0$ thì:

$(x-y)^2=(xy-4)^2=y^2=0$

$\Leftrightarrow x=y=0$ và $xy=4$ (vô lý)

Vậy không tồn tại $x,y$ thỏa mãn đề nên cũng không tồn tại $T$.

25 tháng 12 2020

\(\Leftrightarrow\left\{{}\begin{matrix}x^3+2y^2-4y+3=0\\2x^2+2x^2y^2-4y=0\left(1\right)\end{matrix}\right.\Rightarrow}x^3+2y^2-4y-2x^2-2x^2y^2+4y=0\Rightarrow x^3+1-2x^2y^2+2y^2-2x^2+2=0\Rightarrow\left(x+1\right)\left(x^2-x+1\right)-2y^2\left(x-1\right)\left(x+1\right)-2\left(x-1\right)\left(x+1\right)=0\Rightarrow\left(x+1\right)\left(x^2-x+1-2xy^2+2y^2-2x+2\right)=0\Rightarrow x=-1\)Thay x=-1 vào (1) ta được y2-2y+1=0⇒ (y-1)2=0⇒y-1=0⇒y=1

Do đó Q=x2+y2=(-1)2+12=2

2 tháng 3 2023

\(x^2y^2-x^2-3y^2-2x-1=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)-\left(x+1\right)^2=0\)

\(\Leftrightarrow y^2\left(x^2-3\right)=\left(x+1\right)^2\left(1\right)\)

Vì y2 và (x+1)2 đều là các số chính phương, do đó x2-3 cũng phải là số chính phương.

Đặt \(x^2-3=a^2\) (a là số tự nhiên).

\(\Leftrightarrow\left(x-a\right)\left(x+a\right)=3\)

Ta có x+a>x-a. Lập bảng:

x+a3-1
x-a1-3
x2-2

Với \(x=2\) . \(\left(1\right)\Rightarrow y^2=9\Leftrightarrow y=\pm3\)

Với \(x=-2\)\(\left(1\right)\Rightarrow y^2=1\Leftrightarrow y=\pm1\)

Vậy các số nguyên \(\left(x;y\right)=\left(2;3\right),\left(2;-3\right),\left(-2;1\right),\left(-2;-1\right)\)

 

27 tháng 8 2021

Ta có: \(2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x^2+2xy+y^2\right)=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\)

Theo BĐT Bunhacopxky: \(\left(x^2+y^2\right)\left(1+1\right)\ge\left(x+y\right)^2\Rightarrow\dfrac{3}{2}\left(x^2+y^2\right)\ge\dfrac{3}{4}\left(x+y\right)^2\\ \Rightarrow2x^2+xy+2y^2=\dfrac{3}{2}\left(x^2+y^2\right)+\dfrac{1}{2}\left(x+y\right)^2\ge\dfrac{5}{4}\left(x+y\right)^2\\ \Rightarrow\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

Chứng minh tương tự:

\(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\\ \sqrt{2z^2+xz+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Cộng vế theo vế, ta được: \(P\ge\sqrt{5}\left(x+y+z\right)=\sqrt{5}\cdot1=\sqrt{5}\)

Dấu "=" \(\Leftrightarrow x=y=z=\dfrac{1}{3}\) 

 

27 tháng 8 2021

Bạn tham khảo nhé

https://hoc24.vn/cau-hoi/cho-cac-so-duong-xyz-thoa-man-xyz1cmrcan2x2xy2y2can2y2yz2z2can2z2zx2x2can5.182722154737

6 tháng 9 2019

Xét hàm  trên  ℝ  và đi đến kết quả 

8 tháng 8 2019

NV
22 tháng 2 2021

\(\Leftrightarrow x^2-1=2y^2\)

Do vế phải chẵn \(\Rightarrow\) vế trái chẵn \(\Leftrightarrow x\) lẻ

\(\Rightarrow x=2k+1\)

Pt trở thành: \(\left(2k+1\right)^2-1=2y^2\Leftrightarrow2\left(k^2+k\right)=y^2\)

Vế trái chẵn \(\Rightarrow\) vế phải chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn

\(\Rightarrow y=2\)

\(\Rightarrow x^2-9=0\Rightarrow x=3\)

Vậy \(\left(x;y\right)=\left(3;2\right)\)

7 tháng 5 2018

Áp dụng Bunyakovsky, ta có :

\(\left(1+1\right)\left(x^2+y^2\right)\ge\left(x.1+y.1\right)^2=1\)

=> \(\left(x^2+y^2\right)\ge\frac{1}{2}\)

=> \(Min_C=\frac{1}{2}\Leftrightarrow x=y=\frac{1}{2}\)

Mấy cái kia tương tự