so sánh A và B :
A = 2004x2005/2005x2004 - 1
B = 2009x2010/2010x2009
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2003x2004-1/2003x2004
B=2004x2005-1/2004x2005
A= 1-2003x2004-1/2003x2004=1/2003x2004
B=1-2004x2005-1/2004x2005=1/2004x2005
Vì 1/2003x2004<1/2004x2005 => A>B.
K nhé
\(\text{ta có : }A=\frac{2009.2010-1}{2009.2010}=\frac{2009.2010}{2009.2010}-\frac{1}{2009.2010}=1-\frac{1}{2009.2010}\)
\(B=\frac{2010.2011-1}{2010.2011}=\frac{2010.2011}{2010.2011}-\frac{1}{2010.2011}=1-\frac{1}{2010.2011}\)
\(\text{Vì }2009.2010<2010.2011\text{ nên }\frac{1}{2009.2010}>\frac{1}{2010.2011}\)
Hay A<B
\(\frac{1}{A}=\frac{2008x2007+3}{2008x2007}=1+\frac{3}{2008x2007}.\)
\(\frac{1}{B}=\frac{2009x20010+3}{2009x2010}=1+\frac{3}{2009x2010}\)
\(2009x2010>2008x2007\Rightarrow\frac{3}{2009x2010}< \frac{3}{2008x2007}\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)
#)Giải :
Ta có :
\(A=\frac{2003\times2004-1}{2003\times2004}=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}=1-\frac{1}{2003\times2004}\)
\(B=\frac{2004\times2005-1}{2004\times2005}=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}=1-\frac{1}{2004\times2005}\)
Vì \(\frac{1}{2003\times2004}>\frac{1}{2004\times2005}\)
\(\Rightarrow A>B\)
+) \(A=\frac{2003\times2004-1}{2003\times2004}\)
\(=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}\)
\(=1-\frac{1}{2003\times2004}\)
+) \(B=\frac{2004\times2005-1}{2004\times2005}\)
\(=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}\)
\(=1-\frac{1}{2004\times2005}\)
+) Vì 2004 x 2005 > 2003 x 2004
=> \(\frac{1}{2004\times2005}< \frac{1}{2003\times2004}\)
=> \(1-\frac{1}{2004\times2005}>1-\frac{1}{2003\times2004}\)
Vậy B > A
\(\frac{2003.2004-1}{2003.2004}=\frac{2003.2004}{2003.2004}-\frac{1}{2003.2004}=1-\frac{1}{2003.2004}\)
\(\frac{2004.2005-1}{2004.2005}=\frac{2004.2005}{2004.2005}-\frac{1}{2004.2005}=1-\frac{1}{2004.2005}\)
Vì \(\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
=> \(1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)
=> \(\frac{2003.2004-1}{2003.2004}< \frac{2004.2005-1}{2004.2005}\)
ta có: \(\frac{2003\times2004-1}{2003\times2004}=\frac{2003\times2004}{2003\times2004}-\frac{1}{2003\times2004}=1-\frac{1}{2003\times2004}\)
\(\frac{2004\times2005-1}{2004\times2005}=\frac{2004\times2005}{2004\times2005}-\frac{1}{2004\times2005}=1-\frac{1}{2004\times2005}\)
ta có: \(\frac{1}{2003\times2004}>\frac{1}{2004\times2005}\Rightarrow1-\frac{1}{2003\times2004}<1-\frac{1}{2004\times2005}\)
\(\frac{2003\times2004-1}{2003\times2004}<\frac{2004\times2005-1}{2004\times2005}\)
2004x2005
----------------- = 1 (2004:2004=1; 2005:2005=1 => 2004x2005/2005x2004=1 vì 1x1=1)
2005x2004
1-1=0 vậy A=0
B=1 (tương tự A)
Vậy: A<B
mik lm đúng nha bn
a=2004*2005/2005*2004-1=0-1,b=2009*2010/2010*2009=0,vay a<b